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Abstract
Hella et al. (PODC 2012, Distributed Computing 2015) identified
seven different message-passing models of distributed computing—
one of which is the port-numbering model—and provided a com-
plete classification of their computational power relative to each
other. However, their method for simulating the ability to count
incoming messages causes an additive overhead of 2∆− 2 commu-
nication rounds, and it was not clear if this is actually optimal. In
this paper we give a positive answer, by using bisimulation as our
main tool: there is a matching linear-in-∆ lower bound. This closes
the final gap in our understanding of the models, with respect to the
number of communication rounds. By a previously identified con-
nection to modal logic, our result has implications to the relationship
between multimodal logic and graded multimodal logic.

Categories and Subject Descriptors F.1.1 [Computation by Ab-
stract Devices]: Models of Computation—Relations between mod-
els, unbounded-action devices; F.1.3 [Computation by Abstract
Devices]: Complexity Measures and Classes—Complexity hierarch-
ies, relations among complexity classes; F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Modal logic; G.2.2
[Discrete Mathematics]: Graph Theory—Trees

Keywords distributed computing, port-numbering model, local
algorithms, lower bounds, bisimulation

1. Introduction
This work studies the significance of being able to count the multi-
plicities of identical incoming messages in distributed algorithms.
We compare two models: one, in which each node receives a set of
messages in each round, and another, in which each node receives a
multiset of messages in each round. It has been previously shown
that the latter model can be simulated in the former model by al-
lowing an additive overhead of linear in ∆ communication rounds,
where ∆ is the maximum degree of the graph [9]. In this work we
use bisimulation arguments to show that this is optimal: in some
cases, linear in ∆ extra rounds are strictly necessary.

1.1 Distributed Computing
In our framework of distributed computing, each node of an undir-
ected graph runs the same algorithm. The graph is unknown to the
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algorithm and serves both as the communication network and the
problem instance. The nodes communicate with adjacent nodes in
synchronous rounds and eventually each node produces an output.
The local outputs together constitute a solution to a graph problem—
for instance, in the case of the vertex cover problem, we want each
node to indicate whether it is part of the vertex cover. Running time
is measured by the number of communication rounds, usually as a
function of the number of nodes n or the maximum degree ∆.

We focus on deterministic distributed algorithms in anonymous
networks—that is, nodes do not have unique identifiers. Instead,
nodes can have port numbers: a node v of degree deg(v) can refer
to its neighbours by numbers 1, 2, . . . , deg(v). If we have such
a numbering and it is consistent, that is, input port i and output
port i are always connected to the same neighbour, we arrive at the
well-known port-numbering model introduced by Angluin [2].

1.2 A Hierarchy of Weak Models
The models that we study are weaker variants of the port-numbering
model. Hella et al. [9] defined a collection of seven models, one of
which is the port-numbering model. We denote by VVc the class of
all graph problems that can be solved in this model. The following
subclasses of VVc correspond to the weaker variants:

VV: Input and output ports are numbered, but not necessarily
consistently.

MV: Only output ports are numbered; nodes receive a multiset
of messages.

SV: Only output ports are numbered; nodes receive a set of
messages.

VB: Only input ports are numbered; nodes broadcast the same
message to all neighbours.

MB: Combination of the restrictions of MV and VB.
SB: Combination of the restrictions of SV and VB.

There are some trivial containment relations between the classes,
such as SV ⊆ MV ⊆ VV ⊆ VVc. The trivial relations are depicted
in Figure 1a. However, some classes, such as VB and SV, are
seemingly orthogonal. Somewhat surprisingly, Hella et al. [9] were
able to show that the classes form a linear order:

SB ( MB = VB ( SV = MV = VV ( VVc.

For each class, we can also define the subclass of problems solvable
in constant time independent of the size of the input graph. The
same containment relations hold for the constant-time versions of
the classes. The relations are depicted in Figure 1b.

The equalities between classes are proved by showing that
algorithms corresponding to a seemingly more powerful class can be
simulated by algorithms corresponding to a seemingly weaker class.
In the case of SV = MV, there is an overhead involved, whereas
the rest of the simulation results do not increase the running time.
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Figure 1: (a) Trivial containment relations between the problem
classes. (b) The linear order obtained by Hella et al. [9].

1.3 Classes SV and MV

In this work we study further the relationship between the models
that are related to the classes SV and MV. Neither of the models
features incoming port numbers. The only difference is that in the
case of MV, algorithms are able to count the number of neighbours
that sent any particular message, while in SV this is not possible.
For now we will use informally the terms SV-algorithm and MV-
algorithm; a more formal definition will follow in Section 2.

Hella et al. [9] proved that any MV-algorithm can be simulated
by an SV-algorithm, given that the simulating algorithm is allowed
to use 2∆ − 2 extra communication rounds. The basic idea is
that when nodes gather all available information from their radius-
(2∆ − 2) neighbourhood, the outgoing port numbers necessarily
break symmetry. Any neighbours u and w of a node v either have
different outgoing port numbers towards v or see different local
neighbourhoods. This symmetry-breaking information can then be
used during the simulation to receive a distinct message from each
neighbour.

1.4 Contributions
This work gives tight lower bounds for simulating MV-algorithms
by SV-algorithms. We will prove two theorems. The first theorem
is about a so-called simulation problem, that is, breaking symmetry
between incoming messages. It is intended to be an exact counterpart
to the upper bound result given by the simulation algorithm of Hella
et al. [9].

Theorem 1. For each ∆ ≥ 2 there is a port-numbered graph of
maximum degree ∆ with nodes v, u, w, such that when executing
any SV-algorithm in the graph, node v receives identical messages
from its neighbours u and w in rounds 1, 2, . . . , 2∆− 2.

Our second theorem gives a graph problem that separates MV-
algorithms from SV-algorithms with respect to running time as a
function of the maximum degree ∆.

Theorem 2. There is a graph problem that can be solved in one
communication round by an MV-algorithm, but that requires at
least ∆ rounds for each odd ∆ and ∆− 1 rounds for each even ∆,
when solved by an SV-algorithm.

Our results are based on a construction of a family of graphs
with an intricate port numbering of certain kind. We start by proving
Theorem 1 in Section 3, and then we adapt the same construction to
prove Theorem 2 in Section 4.

In addition to studying the relationship between MV-algorithms
and SV-algorithms, we aim to promote the use of tools from logic,
in this case bisimulation, to advance the understanding of distributed
computing.

1.5 Motivation and Related Work
The port-numbering model, or VVc, can be thought to model wired
networks, whereas the model SB corresponds to fully wireless
systems. Other models in the hierarchy are intermediate steps
between the two extreme cases.

Models similar to MV have been studied previously under
various names: output port awareness [6], wireless in input [5],
mailbox [5], port-to-mailbox [18] and port-à-boîte [7]. However,
most of the previous research does not give general results about
graph problems, but instead focuses on individual problems or
makes different assumptions about the model. To the best of our
knowledge, the model SV has not been studied before the work of
Hella et al. [9]. The constant-time version of SV can be seen as a
special case of the distributed graph automata defined by Reiter [16],
when restricted to bounded-degree graphs.

Emek and Wattenhofer [8] have considered networks of nodes
with very limited computation and communication capabilities. In
particular, in their model nodes can count identical messages only
up to some predetermined number—this restriction can be seen
as an intermediate step between our SV and MV models. They
argue that this kind of restricted models will be crucial when
applying distributed computing to networks of biological cells,
where receiving a message corresponds to recognising the presence
of some protein.

Our models have analogies also in graph exploration. The models
SV and MV correspond to the case where an agent does not know
from which edge it arrived to a node. This is true for traversal
sequences [1], as opposed to exploration sequences [10]. If we have
several agents exploring a graph, the question of whether they can
count the number of identical agents in a node becomes interesting.
Our lower bounds indicate that, with appropriate definitions, this
ability causes a difference of linear in ∆ steps in certain traversal
sequences.

Hella et al. [9] identified a connection between the seven models
of computation and certain variants of modal logic, in the spirit
of descriptive complexity theory. In certain classes of structures,
graded multimodal logic corresponds to MV and multimodal logic
corresponds to SV. Thus our lower-bound result implies a new
separation between multimodal logic and graded multimodal logic:
when given a formula φ of graded multimodal logic, we can find a
formula ψ of multimodal logic that is equivalent to φ in a certain
class of structures, but in general, the modal depth md(ψ) of ψ
has to be at least md(φ) + ∆− 1. For details on modal logic, see
Blackburn, de Rijke and Venema [3] or Blackburn, van Benthem
and Wolter [4].

Somewhat analogously to our work, Krebs and Verbitsky [11]
have studied universal covers of graphs by making use of a bisim-
ulation version of the 2-pebble counting game. They showed that
there exist graphs G and H , and their nodes u and v, respectively,
such that a distributed algorithm needs at least 2n− 16

√
n rounds

to distinguish between u and v, assuming that it is possible. Further
examples of the use of logic in distributed computing have been
given by Kuusisto [12, 13].

2. Preliminaries
In this section we define the models of computation and the problems
we study, as well as introduce tools that will be needed in order to
prove our results.

2.1 Distributed Algorithms
We define distributed algorithms as state machines. They are ex-
ecuted in a graph such that each node of the graph is a copy of the
same state machine. Nodes can communicate with adjacent nodes.



In this work, we consider only deterministic state machines and
synchronous communication in anonymous networks.

In the beginning of execution, each state machine is initialised
based on the degree of the node and a possible local input given to it.
Then, in each communication round, each state machine performs
three operations:

(1) sends a message to each neighbour,
(2) receives a message from each neighbour,
(3) moves to a new state based on the current state and the received

messages.

If the new state belongs to a set of special stopping states, the
machine halts. The local output of the node is its state after halting.
Next, we will define distributed systems more formally.

2.1.1 Inputs and Port Numberings
Consider an undirected graph G = (V,E). An input for G is a
function f : V → X , where X is a finite set such that ∅ ∈ X . For
each v ∈ V , the value f(v) is called the local input of v.

A port of G is a pair (v, i), where v ∈ V is a node and
i ∈ [deg(v)] is the number of the port. Let P (G) be the set of all
ports of G. A port numbering of G is a bijection p : P (G)→ P (G)
such that

p(v, i) = (u, j) for some i ∈ [deg(v)] and j ∈ [deg(u)]

if and only if {v, u} ∈ E. Intuitively, if p(v, i) = (u, j), then (v, i)
is the ith output port of node v, and it is connected to (u, j), which
is the jth input port of node u.

When analysing lower-bound constructions, we will find the
following generalisation of port numbers useful. Let N be an
arbitrary set. Assume that for each v ∈ V , Iv ⊆ N andOv ⊆ N are
subsets of size deg(v). Now, a generalised input port is a pair (v, i),
where v ∈ V and i ∈ Iv , and a generalised output port is a pair
(v, o), where v ∈ V and o ∈ Ov . A generalised port numbering p
is then a bijection from the set of generalised output ports to the set
of generalised input ports such that

p(v, o) = (u, i) for some o ∈ Ov and i ∈ Iu
if and only if {v, u} ∈ E.

2.1.2 State Machines
For each positive integer ∆, denote by F(∆) the class of all simple
undirected graphs of maximum degree at most ∆. Let X 3 ∅ be a
finite set of local inputs. A distributed state machine for (F(∆), X)
is a tuple A = (Y,Z, σ0,M, µ, σ), where

• Y is a set of states,
• Z ⊆ Y is a finite set of stopping states,
• σ0 : {0, 1, . . . ,∆}×X → Y is a function that defines the initial

state,
• M is a set of messages such that ε ∈M ,
• µ : Y × [∆] → M is a function that constructs the outgoing

messages, such that µ(z, i) = ε for all z ∈ Z and i ∈ [∆],
• σ : Y ×M∆ → Y is a function that defines the state transitions,

such that σ(z,m) = z for all z ∈ Z and m ∈M∆.

The special symbol ε ∈M indicates “no message” and ∅ indicates
“no input”.

2.1.3 Executions
Let G = (V,E) ∈ F(∆) be a graph, let p be a port numbering of
G, let f : V → X be an input for G, and letA be a distributed state
machine for (F(∆), X). Then we can define the execution of A in
(G, f, p) as follows.

The state of the system in round r ∈ N is represented as a
function xr : V → Y , where xr(v) is the state of node v in round r.

To initialise the nodes, set x0(v) = σ0(deg(v), f(v)) for each v ∈
V .

Then, assume that xr is defined for some r ∈ N. Let (u, j) ∈
P (G) and (v, i) = p(u, j). Now, node v receives the message
ar+1(v, i) = µ(xr(u), j) from its port (v, i) in round r + 1. For
each v ∈ V , we define a vector of length ∆ consisting of messages
received by node v in round r + 1 and the symbol ε:

ar+1(v) = (ar+1(v, 1), . . . , ar+1(v,deg(v)), ε, . . . , ε),

where the padding with the special symbol ε is to simplify our
notation so that ar+1(v) ∈M∆. Now we can define the new state
of each node v ∈ V as follows:

xr+1(v) = σ(xr(v), ar+1(v)).

Let t ∈ N. If xt(v) ∈ Z for all v ∈ V , we say thatA stops in time t
in (G, f, p). The running time of A in (G, f, p) is the smallest t for
which this holds. If A stops in time t in (G, f, p), the output of A
in (G, f, p) is xt : V → Y . For each v ∈ V , the local output of v
is xt(v).

We define the execution of A in (G, p) to be the execution of A
in (G, f, p), where f is the unique function f : V → {∅}.

2.1.4 Algorithm Classes
So far, we have defined only a single model of computation. How-
ever, our aim in this work is to investigate the relationships between
two variants of the model. To this end, we will now introduce two
different restrictions to the definition of a state machine.

Given a vector a = (a1, a2, . . . , a∆) ∈M∆, define

set(a) = {a1, a2, . . . , a∆},
multiset(a) = {(m,n) : m ∈M,n = |{i ∈ [∆] : m = ai}|}.

That is, set(a) discards the ordering and multiplicities of the
elements of a, while multiset(a) discards only the ordering.

Now we can define the classes SV andMV of state machines.
The class SV consists of all distributed state machines A =
(Y,Z, σ0,M, µ, σ) such that

set(a) = set(b) implies σ(y, a) = σ(y, b)

for all y ∈ Y . Similarly, the classMV consists of all distributed
state machines A = (Y,Z, σ0,M, µ, σ) such that

multiset(a) = multiset(b) implies σ(y, a) = σ(y, b)

for all y ∈ Y .
The idea here is that for state machines in MV , the state

transitions are invariant with respect to the order of incoming
messages; in practice, nodes receive the messages in a multiset.
In SV , nodes receive the messages in a set, which means that the
state transitions are invariant with respect to both the order and
multiplicities of incoming messages.

We will later find use for the following definitions for infinite
sequences of state machines, where ∆ will be used as an upper
bound for the maximum degree of graphs:

MV = {(A1,A2, . . . ) : A∆ ∈MV for all ∆},
SV = {(A1,A2, . . . ) : A∆ ∈ SV for all ∆}.

From now on, both distributed state machines A ∈MV ∪ SV
and sequences of distributed state machines A ∈MV ∪ SV will
be referred to as algorithms. The precise meaning should be clear
from the notation.

2.2 Graph Problems
Let X and Y be finite nonempty sets. A graph problem is a
function ΠX,Y that maps each undirected simple graph G = (V,E)
and each input f : V → X to a set ΠX,Y (G, f) of solutions. Each



solution S ∈ ΠX,Y (G, f) is a function S : V → Y . We handle
problems without local input by setting X = {∅}. One can see
that our definition covers a large selection of typical distributed
computing problems, such as those where the task is to find a subset
or colouring of vertices.

Let ΠX,Y be a graph problem, T : N× N→ N a function and
A = (A1,A2, . . . ) a sequence such that each A∆ is a distributed
state machine for (F(∆), X). We say that A solves ΠX,Y in
time T if the following conditions hold for all ∆ ∈ N, all finite
graphs G = (V,E) ∈ F(∆), all inputs f : V → X and all port
numberings p of G:

(1) A∆ stops in time T (∆, |V |) in (G, f, p).
(2) The output of A∆ in (G, f, p) is in ΠX,Y (G, f).

If there exists a function T : N × N → N such that A solves
ΠX,Y in time T , we say that A solves ΠX,Y or that A is an
algorithm for ΠX,Y . If the value T (∆, n) does not depend on n, that
is, if we have T (∆, n) = T ′(∆) for some function T ′ : N → N,
we say that A solves ΠX,Y in constant time or that A is a local
algorithm for ΠX,Y .

2.2.1 Problem Classes
Now we are ready to define complexity classes based on our different
notions of algorithms:

• MV consists of problems Π such that there is an algorithm
A ∈MV that solves Π.

• SV consists of problems Π such that there is an algorithm
A ∈ SV that solves Π.

For both classes, we can also define their constant-time variants
MV(1) and SV(1) that are subclasses of MV and SV restricted to
problems solvable in constant time.

Observe that it follows trivially from the definitions of the
algorithm classes that SV ⊆ MV and SV(1) ⊆ MV(1). It was
shown by Hella et al. [9] that we actually have SV = MV and
SV(1) = MV(1).

2.3 Bisimulation
In this section we introduce bisimulation—and in particular, its finite
approximation, r-bisimulation—which we will need when proving
lower-bound results in Sections 3 and 4. Simply put, a bisimulation
is a relation between two structures such that related elements have
identical local information and equivalent relations to other elements.
For more details on bisimulation in general, see Blackburn, de Rijke
and Venema [3].

Hella et al. [9] demonstrated the use of bisimulation in distributed
computing by capturing the models of computation by modal logics.
Here we take a self-contained approach by showing directly that
bisimilarity implies indistinguishability by distributed algorithms.

The general concept of bisimulation can be adapted to take into
account the different amounts of information that is available to
algorithms in each model. We will need only one variant in this
work, the one corresponding to the class SV .

Definition 3. Let G = (V,E) and G′ = (V ′, E′) be graphs, let
f and f ′ be inputs for G and G′, respectively, and let p and p′ be
generalised port numberings of G and G′, respectively. We define
r-SV-bisimilarity recursively. As a base case, we say that nodes
v ∈ V and v′ ∈ V ′ are 0-SV-bisimilar if degG(v) = degG′(v

′)
and f(v) = f ′(v′). For r ∈ N+, we say that v ∈ V and v′ ∈ V ′
are r-SV-bisimilar if the following conditions hold:

(B1) Nodes v and v′ are 0-SV-bisimilar.
(B2) If {v, w} ∈ E, then there isw′ ∈ V ′ with {v′, w′} ∈ E′ such

that w and w′ are (r − 1)-SV-bisimilar, and p(w, a) = (v, b)
and p′(w′, a) = (v′, c) hold for some a, b, c.

(B3) If {v′, w′} ∈ E′, then there is w ∈ V with {v, w} ∈ E such
that w and w′ are (r − 1)-SV-bisimilar, and p(w, a) = (v, b)
and p′(w′, a) = (v′, c) hold for some a, b, c.

If v ∈ V and v′ ∈ V ′ are r-SV-bisimilar, we write (G, f, v, p)
↔SVr (G′, f ′, v′, p′)—or simply v ↔SVr v′, if the graphs, inputs and
generalised port numberings are clear from the context.

It is easy to show by induction that if v ↔SVr v′ holds for some r,
then v ↔SVt v′ holds for all t = 0, 1, . . . , r. The following three
lemmas enable us to apply bisimulation to distributed algorithms;
the proofs are straightforward induction arguments and can be found
in the full version of this work [15]. Our first lemma shows that
r-bisimilarity entails indistinguishability by distributed algorithms
up to running time r.

Lemma 4. Let G = (V,E) and G′ = (V ′, E′) be graphs,
let f and f ′ be inputs for G and G′, respectively, and let
p and p′ be port numberings of G and G′, respectively. If
(G, f, v, p)↔SVr (G′, f ′, v′, p′) for some r ∈ N, v ∈ V and
v′ ∈ V ′, then for all algorithms A ∈ SV we have xt(v) = x′t(v

′)
for all t = 0, 1, . . . , r, that is, the states of v and v′ are identical in
rounds 0, 1, . . . , r.

It is quite easy to show that r-SV-bisimilarity is an equivalence
relation. Since we will only need transitivity in this work, the
following lemma suffices.

Lemma 5. The r-SV-bisimilarity relation ↔SVr is transitive in
the class of quadruples (G, f, v, p), where G = (V,E) is a graph,
f is an input for G, p is a generalised port numbering of G and
v ∈ V .

Finally, when given a generalised port numbering and a bisimilar-
ity result, we need to be able to introduce an ordinary port numbering
in order to actually apply the result to distributed algorithms. The
following lemma shows that we can do this.

Lemma 6. Let G = (V,E) and G′ = (V ′, E′) be graphs,
let f and f ′ be inputs for G and G′, respectively, and let
p and p′ be generalised port numberings of G and G′, re-
spectively, with port numbers taken from a set N . Suppose
that q and q′ are port numberings of G and G′, respectively,
such that p(v, i) = (u, j) implies q(v, g(i)) = (u, g(j)) and
p′(v, i) = (u, j) implies q′(v, g(i)) = (u, g(j)) for some func-
tion g : N → N+. Then (G, f, v, p)↔SVr (G′, f ′, v′, p′) implies
(G, f, v, q)↔SVr (G′, f ′, v′, q′) for all v ∈ V and v′ ∈ V ′.

Traditionally, the technique of local views [17] has often
been used in distributed computing to show lower-bound and im-
possibility results. We advocate for bisimulation as a worthwhile
alternative—the proof of Lemma 4 is particularly straightforward
and thus demonstrates the naturalness of the concept. While bisim-
ulation was used by Hella et al. [9], to our knowledge the present
work is the first to apply the finite version, r-bisimulation, in the
context of distributed computing.

3. A Lower Bound for the Simulation Overhead
Let us begin by restating the result that we will prove in this section.

Theorem 1. For each ∆ ≥ 2 there is a graph G = (V,E) ∈
F(∆), a port numbering p of G and nodes v, u, w ∈ V such
that when executing any algorithm A ∈ SV in (G, p), node v
receives identical messages from its neighbours u and w in rounds
1, 2, . . . , 2∆− 2.

To prove Theorem 1, we define for each d = 2, 3, . . . a
graph Gd = (Vd, Ed) of maximum degree d. The graph itself
is just a rooted tree, but it gives rise to a port numbering with certain



properties. We construct the graph so that two neighbours u and w
of the root node are in a sense as symmetrical as possible—with the
exception that they have the same outgoing port number towards
the root, while the root obviously cannot have the same port number
towards them. By symmetrical we mean that if a node u′ in the
neighbourhood of u has a neighbour with outgoing port number i
towards u′, then there is a corresponding node v′ in the neighbour-
hood of v with a neighbour having port number i towards v′, and
vice versa. Intuitively, one can start by assigning the port numbers 1
and 2 to the connections between the root and its two neighbours,
and then add a new node whenever needed to satisfy the above
notion of symmetry, until the maximum degree d is reached.

The set Vd of nodes consists of sequences of pairs (i, j), where
i, j ∈ {0, 1, . . . , d} will serve as a basis for port numbers, as we
will see later. Each sequence can be thought as a path leading from
the root to the node itself. The fundamental idea of the definition
is that we construct the graph one level of nodes at a time, starting
from the root, and assign generalised port numbers to each edge of a
node by choosing the smallest numbers that have not yet been taken.
The choice depends slightly on whether the level in question is even
or odd—due to the unavoidable asymmetry in the root. Note that at
this stage we will use the number 0 in our construction, but it will
be replaced by 1 when defining the actual port numbering.

We define the set Vd of nodes recursively as follows:

(G1) ∅ ∈ Vd.

(G2) ((1, 0)), ((2, 1)), ((3, 2)), ((4, 3)), . . . , ((d, d− 1)) ∈ Vd.

(G3) If (a1, a2, . . . , ai) ∈ Vd, where i is odd and i ≤ 2d− 1, then
(a1, a2, . . . , ai, a

j
i+1) ∈ Vd for all j = 1, 2, . . . , d−1, where

aji+1 = (cj1, c
j
2) is defined as follows. Let (b1, b2) = ai and

b+2 = 1 if b2 = 0, b+2 = b2 otherwise. Define

cj1 = min({1, 2, . . . , d} \ {b+2 , c
1
1, c

2
1, . . . , c

j−1
1 }),

cj2 = min({1, 2, . . . , d} \ {b1, c12, c22, . . . , cj−1
2 }).

(G4) If (a1, a2, . . . , ai) ∈ Vd, where i is even and 2 ≤ i ≤ 2d− 2,
then (a1, a2, . . . , ai, a

j
i+1) ∈ Vd for all j = 1, 2, . . . , d − 1,

where aji+1 = (cj1, c
j
2) is defined as follows. Let (b1, b2) = ai.

Define

cj1 = min({1, 2, . . . , d} \ {b2, c11, c21, . . . , cj−1
1 }),

cj2 = min({0, 1, . . . , d− 1} \ {b1, c12, c22, . . . , cj−1
2 }).

The set Ed of edges consists of all pairs {v, u}, where v =
(a1, a2, . . . , ai) ∈ Vd and u = (a1, a2, . . . , ai, ai+1) ∈ Vd for
some i ∈ {0, 1, . . .}. Figures 2 and 3 below provide illustrations of
the graphs G3 and G6.
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Figure 2: A part of the graphG3, with named nodes. The nodes with
a light background are contained already in the graph G2, while the
nodes with a dark background are only in Gd for d ≥ 3.
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Figure 3: The radius-2 neighbourhood of node u0 = ∅ of graph G6.
We have for example u1 = ((1, 0)), u2 = ((2, 1)) and u7 =
((1, 0), (2, 2)).

Consider nodes v = (a1, a2, . . . , ai) and u = (a1, a2,
. . . , ai+1), where ai+1 = (b1, b2). The values b1 and b2 serve
as generalised port numbers for the edge {v, u}. We define
pd(v, b1) = (u, b2) and pd(u, b2) = (v, b1). The incoming port
numbers will be irrelevant in this proof, since we only consider
algorithms in the classes SV andMV . Thus, we will mostly use the
notation πd(v, u) = b1 and πd(u, v) = b2 to denote the outgoing
port numbers.

If v = (a1, a2, . . . , ai) and u = (a1, a2, . . . , ai+1), we say that
node v is the parent of node u and that u is a child of v. We say that
the node v is even if i is even and odd if i is odd. If ai = (b1, b2),
we call (b1, b2) the type of node v.

A walk is a sequence v = (v0, v1, . . . , vk) of nodes such that
{vi, vi+1} ∈ Ed for all i = 0, 1, . . . , k − 1. A pair (v1, v2) of
walks, where vi = (vi0, v

i
1, . . . , v

i
k) for all i = 1, 2, and k ≤ 2d−3,

is called a pair of compatible walks (PCW) of length k in Gd if the
following two conditions hold:

(W1) v1
0 = ((1, 0)) and v2

0 = ((2, 1)).
(W2) πd(v1

j , v
1
j−1) = πd(v2

j , v
2
j−1) for all j = 1, 2, . . . , k.

A PCW (v1, v2) is called a pair of separating walks (PSW), if v1

can be extended in such a way that v2 cannot be extended and still
remain compatible, that is, if the following holds:

(W3) There is v1
k+1 ∈ Vd with {v1

k, v
1
k+1} ∈ Ed such that

there is no v2
k+1 ∈ Vd for which {v2

k, v
2
k+1} ∈ Ed and

πd(v1
k+1, v

1
k) = πd(v2

k+1, v
2
k).

We say that a pair of separating walks of length k in Gd is critical if
there does not exist a pair of separating walks of length k′ in Gd for
any k′ < k.

Consider the graphG6 in Figure 3. One example of a PSW inG6

is the pair (v1, v2), where v1 = (u1, u7, u1, u8, u1, u9, u1, u10,
u1, u11) and v2 = (u2, u0, u3, u0, u4, u0, u5, u0, u6, u0). Here
the corresponding sequence of generalised port numbers given by
π6 is 2, 2, 3, 3, 4, 4, 5, 5, 6. That is, the walks are going back and
forth between one node and its neighbours—but this does not hold
for PSWs in general. Observe that now node u11 has a neighbour u1

with π6(u1, u11) = 6, but node u0 does not have such a neighbour.
As we will see later, the fact that the sequence grows only by

small increments and eventually reaches the parameter d is actually a
general property of PSWs; this is one of the crucial ideas behind our
proof. While one can show with moderate effort that the generalised
port numbers increase at most linearly along the walks, showing a
tight upper bound for the increase—and thus a tight lower bound for
the length of the walks—appears to be considerably non-trivial.



The outline of the proof is as follows. First, we will prove
auxiliary results concerning the graphs Gd and PSWs. These will
enable us to obtain a tight lower bound for the length of PSWs.
Then, we will show that this lower bound entails bisimilarity of the
nodes ((1, 0)) and ((2, 1)) up to the respective distance. The first
four lemmas follow quite easily from the definition of the graphs;
see the full version of this work [15] for proofs.

Lemma 7. For each d, we have deg(v) ∈ {1, d} for all v ∈ Vd,
and thus Gd ∈ F(d). Additionally, Gd is a subgraph of Gd+1.

Lemma 8. Let v ∈ Vd and a ∈ {0, 1, . . . , d}. Then there is at most
one node u ∈ Vd such that {v, u} ∈ Ed and πd(u, v) = a.

A consequence of Lemma 8 is that in a walk, the successor
of each node is uniquely determined by the port number from the
successor to the node.

Lemma 9. Let v = (a1, a2, . . . , ai) ∈ Vd, where i < 2d. If v is
odd, then for all a ∈ {1, 2, . . . , d} there exists u ∈ Vd such that
{v, u} ∈ Ed and πd(u, v) = a. If v is even, then either for all
a ∈ {0, 1, . . . , d − 1} or for all a ∈ {0, 1, . . . , d − 2, d} there
exists u ∈ Vd such that {v, u} ∈ Ed and πd(u, v) = a. In the case
of even v and a = d, node u is the parent of node v.

Lemma 9 implies that in a PSW, the last nodes of each walk must
be even. Furthermore, one of the last nodes v must have a parent u
with πd(u, v) = d. It follows that we must have v ∈ Vd \ Vd−1.

Our next lemma reflects the fact that when going from Gd to
Gd+1, old nodes can only get new children, not new parents, and
that new port numbers are necessarily large.

Lemma 10. Let {v, u} ∈ Ed+1 \ Ed be such that v ∈ Vd. Then u
is a child of v. If v is odd, then πd+1(v, u) = πd+1(u, v) = d+ 1.
If v is even, then πd+1(v, u) = d+ 1 and πd+1(u, v) ∈ {d− 1, d}.

With the above observations out of the way, we now go forward
with more powerful results.

If the walks of a PSW go to child nodes through edges with
similar port numbers, they end up in subtrees that are isomorphic
up to a depth larger than the number of steps left in the walks. Thus
they eventually have to return from the subtrees. This makes them
longer than they need to be, as the following lemma shows.

Lemma 11. Let (v1, v2), where vi = (vi0, v
i
1, . . . , v

i
k) for all

i = 1, 2, be a PSW in Gd. If for some ` ∈ {0, 1, . . . , k − 1}
the node vi`+1 is a child of node vi` for all i = 1, 2, and we have
πd(v1

` , v
1
`+1) = πd(v2

` , v
2
`+1), then (v1, v2) is not a critical PSW

in Gd.

Proof. Suppose that for all m = ` + 2, ` + 3, . . . , k we have
v1
m 6= v1

` or v2
m 6= v2

` . By assumption, v1
`+1 and v2

`+1 are of the
same type. Consider the definition of Gd. Now it is easy to show
by induction on m that nodes v1

m and v2
m are of the same type for

all m = ` + 1, ` + 2, . . . , k. Since k ≤ 2d − 3 by the definition
of a PSW, both v1

k and v2
k have child nodes. It follows that if v1

k+1

is a neighbour of v1
k, there is a neighbour v2

k+1 of v2
k such that

πd(v1
k+1, v

1
k) = πd(v2

k+1, v
2
k). Thus (v1, v2) is not a PSW in Gd,

a contradiction.
Now v1

m = v1
` and v2

m = v2
` for somem ∈ {`+2, `+3, . . . , k}.

Let
v′i = (vi0, v

i
1, . . . , v

i
`, v

i
m+1, v

i
m+2, . . . , v

i
k)

for all i = 1, 2. Then (v′1, v
′
2) is a PSW of length k −m + ` ≤

k − (` + 2) + ` = k − 2 < k in Gd and hence (v1, v2) is not
critical.

Next we show that we can extend a PSW by adding two nodes
to each walk to get a new PSW in a larger graph.

Lemma 12. Let (v1, v2) be a PSW of length k in Gd. Then there
is a PSW of length k + 2 in Gd+1.

Proof. Let vi = (vi0, v
i
1, . . . , v

i
k) for all i = 1, 2. By definition,

there is a neighbour u ∈ Vd of v1
k such that for each neighbour w ∈

Vd of v2
k we have πd(u, v1

k) 6= πd(w, v2
k). Lemma 9 implies

that v1
k and v2

k are even, πd(u, v1
k) ∈ {d − 1, d}, and there is a

neighbour w ∈ Vd of v2
k for which πd(w, v2

k) ∈ {d − 1, d} \
{πd(u, v1

k)}. That is, we have πd(u, v1
k) = d or πd(w, v2

k) = d.
Without loss of generality, we can assume πd(u, v1

k) = d and thus
πd(w, v2

k) = d− 1.
Lemma 7 implies that degGd

(u) = degGd
(v2

k) = d and
degGd+1

(u) = degGd+1
(v2

k) = d + 1. Hence there are nodes
x, y ∈ Vd+1 \ Vd such that {u, x} ∈ Ed+1 \ Ed and {v2

k, y} ∈
Ed+1 \ Ed. Note that u, v2

k ∈ Vd, u is odd and v2
k is even. It

follows from Lemma 10 that πd+1(u, x) = πd+1(x, u) = d + 1,
πd+1(v2

k, y) = d + 1 and πd+1(y, v2
k) ∈ {d − 1, d}. Since

πd+1(w, v2
k) = πd(w, v2

k) = d− 1 and w 6= y, Lemma 8 implies
that πd+1(y, v2

k) = d.
Now we can extend the walks v1 and v2. Set v′1 = (v1

0 , v
1
1 , . . . ,

v1
k, u, x) and v′2 = (v2

0 , v
2
1 , . . . , v

2
k, y, v

2
k). We have πd+1(u, v1

k) =
d = πd+1(y, v2

k) and πd+1(x, u) = d + 1 = πd+1(v2
k, y),

as required. Furthermore, node x has neighbour u for which
πd+1(u, x) = d + 1. Suppose that there is a neighbour u′ of
v2
k for which πd+1(u′, v2

k) = d+ 1. Now Lemma 9 implies that u′

is the parent of v2
k. But since v2

k ∈ Vd, we have also u′ ∈ Vd, and
hence πd+1(u′, v2

k) ≤ d, a contradiction. Similarly, node v2
k has

neighbour y for which πd+1(y, v2
k) = d, but πd+1(u, x) = d + 1

together with Lemma 9 implies that there is no neighbour y′ of x
for which πd+1(y′, x) = d. This shows that (v′1, v

′
2) is a PSW of

length k + 2 in Gd+1.

As the following lemma points out, the second-to-last node of at
least one walk in a PSW does not belong to any smaller construction,
that is, it is a new node when going from Gd−1 to Gd.

Lemma 13. Let (v1, v2), where vi = (vi0, v
i
1, . . . , v

i
k) for all

i = 1, 2, be a critical PSW in Gd. Then we have vik−1 ∈ Vd \ Vd−1

for some i ∈ {1, 2}.

Proof. Lemma 9 implies that v1
k and v2

k are even, and for some
i ∈ {1, 2} node vik has a parent u such that πd(u, vik) = d. If
vik ∈ Vd−1, then also u ∈ Vd−1 and hence πd(u, vik) ≤ d − 1, a
contradiction. Therefore vik ∈ Vd \ Vd−1.

Suppose that vjk−1 ∈ Vd−1 for all j = 1, 2. Since vik ∈
Vd \ Vd−1, we have {vik−1, v

i
k} ∈ Ed \ Ed−1. Lemma 10 implies

that vik is a child of vik−1 and πd(vik−1, v
i
k) = πd(vik, v

i
k−1) = d.

Let j ∈ {1, 2} \ {i}. As πd(vjk, v
j
k−1) = πd(vik, v

i
k−1) = d, we

have {vjk−1, v
j
k} ∈ Ed \ Ed−1 and thus vjk is a child of vjk−1 and

πd(vjk−1, v
j
k) = πd(vjk, v

j
k−1) = d. Now it follows from Lemma 11

that (v1, v2) is not a critical PSW in Gd, a contradiction.

Lemma 14 basically states the negation of condition (W3), with
the additional observation that the walks of a PCW have symmetrical
roles.

Lemma 14. Let (v1, v2), where vi = (vi0, v
i
1, . . . , v

i
k) for all

i = 1, 2, be a PCW in Gd. If (v1, v2) is not a PSW in Gd, then for
each neighbour v1

k+1 ∈ Vd of v1
k there is a neighbour v2

k+1 ∈ Vd

of v2
k such that πd(v1

k+1, v
1
k) = πd(v2

k+1, v
2
k), and vice versa.

Proof. Since (v1, v2) is not a PSW, condition (W3) does not hold.
This is equivalent to the first claim. For the second claim, assume that
v2
k+1 is a neighbour of v2

k. Suppose that there is no neighbour v1
k+1

of v1
k such that πd(v1

k+1, v
1
k) = πd(v2

k+1, v
2
k). Now it follows from



Lemma 7 and Lemma 9 that v1
k and v2

k are even and πd(v2
k+1, v

2
k) ∈

{d−1, d}. We also obtain from Lemma 9 that there is a neighbour u
of v1

k for which πd(u, v1
k) ∈ {d− 1, d} \ {πd(v2

k+1, v
2
k)}. Now u

is a neighbour of v1
k such that there is no neighbour w of v2

k for
which πd(u, v1

k) = πd(w, v2
k), a contradiction.

Now we are ready to prove the following lemma, which is the
main ingredient of the proof of Theorem 1. The underlying idea is
that the generalised port numbers along the walks of a PSW can
only grow slowly—roughly by one every two steps. Put otherwise,
each prefix of a critical PSW must be contained in a subgraph Gd

for a sufficiently small value of d.

Lemma 15. Let (v1, v2), where vi = (vi0, v
i
1, . . . , v

i
k) for all

i = 1, 2, be a critical PSW in Gd. Then (v′1, v
′
2), where v′i =

(vi0, v
i
1, . . . , v

i
k−2) for all i = 1, 2, is a PSW in Gd−1.

Proof. First, suppose that {vi`, vi`+1} ∈ Ed−1 for all i = 1, 2
and ` = 0, 1, . . . , k − 3 but that (v′1, v

′
2) is not a PSW in Gd−1.

Assume that {vik−2, v
i
k−1} ∈ Ed−1 for some i ∈ {1, 2} and

let j ∈ {1, 2} \ {i}. It follows from Lemma 14 that there is
a neighbour u ∈ Vd−1 of vjk−2 such that πd−1(u, vjk−2) =

πd−1(vik−1, v
i
k−2). Now Lemma 8 implies that u = vjk−1 and

hence we have vik−1, v
j
k−1 ∈ Vd−1. Then we can use Lemma 13 to

obtain that (v1, v2) is not a critical PSW in Gd, a contradiction.
Let us then assume that {vik−2, v

i
k−1} ∈ Ed \ Ed−1 for all i =

1, 2. As vik−2 ∈ Vd−1 for all i = 1, 2, Lemma 10 implies that vik−1

is a child of vik−2 and πd(v1
k−2, v

1
k−1) = d = πd(v2

k−2, v
2
k−1) for

all i = 1, 2. But now we can apply Lemma 11 to see that (v1, v2)
is not a critical PSW in Gd, a contradiction. We have now shown
that if {vi`, vi`+1} ∈ Ed−1 for all i = 1, 2 and ` = 0, 1, . . . , k − 3,
then (v′1, v

′
2) is a PSW in Gd−1.

Then, suppose that {vi`, vi`+1} ∈ Ed \Ed−1 for some i ∈ {1, 2}
and ` ∈ {0, 1, . . . , k − 3}. Let m be the smallest value of `
for which this holds. Let j ∈ {1, 2} \ {i}. If m is even, then
the node vim ∈ Vd−1 is odd, and by Lemma 10 we have that
πd(vim, v

i
m+1) = πd(vim+1, v

i
m) = d and that vim+1 is a child

of vim. Since πd(vjm+1, v
j
m) = πd(vim+1, v

i
m) = d, we obtain

{vjm, vjm+1} ∈ Ed \ Ed−1. As vjm ∈ Vd−1 is odd, Lemma 10
yields that πd(vjm, v

j
m+1) = πd(vjm+1, v

j
m) = d and that vjm+1 is

a child of vjm. Lemma 11 then implies that (v1, v2) is not a critical
PSW in Gd, a contradiction.

To complete the proof, assume that m is odd. Recall that
{vim, vim+1} ∈ Ed \ Ed−1. If also {vjm, vjm+1} ∈ Ed \ Ed−1,
we can again use Lemma 10 to get that vim+1 and vjm+1 are
children of vim and vjm, respectively, and that πd(vim, v

i
m+1) =

d = πd(vjm, v
j
m+1). Now Lemma 11 yields a contradiction. If

{vjm, vjm+1} ∈ Ed−1, let v′′` = (v`0, v
`
1, . . . , v

`
m) for all ` = 1, 2.

The pair (v′′1 , v
′′
2 ) is a PSW in Gd−1, because otherwise by using

a similar argument as above we would obtain that {vim, vim+1} ∈
Ed−1, a contradiction. But now we can use Lemma 12 to get a PSW
of length m+ 2 ≤ (k − 3) + 2 = k − 1 in Gd, which contradicts
the criticality of (v1, v2).

Having proved Lemma 15, the following result now follows by
induction; see the full version of this work [15] for a proof.

Lemma 16. Let (v1, v2) be a PSW of length k in Gd. Then
k ≥ 2d− 3.

Now we just need to show that the lower bound for the length of
PSWs implies bisimilarity up to the respective distance, and we are
mostly done.

Lemma 17. We have ((1, 0))↔SV2d−3 ((2, 1)), that is, the nodes
((1, 0)) and ((2, 1)) of Gd are (2d− 3)-SV-bisimilar.

Proof. If we have ((1, 0))↔SVk ((2, 1)) for arbitrarily large k, the
claim is clearly true. Otherwise, let k be the largest integer for which
we have ((1, 0))↔SVk ((2, 1)). We will show that k ≥ 2d− 3.

Let v1
0 = ((1, 0)) and v2

0 = ((2, 1)). Suppose then that ` ∈
{0, 1, . . . , k−1} and that v1

` and v2
` have been defined. Furthermore,

suppose that k − ` is the largest integer m for which v1
` ↔SVm v2

`

holds. If for each neighbour u of v1
` there was a neighbour w of v2

` ,
and vice versa, such that u↔SVk−` w and πd(u, v1

` ) = πd(w, v2
` ),

then by Definition 3 we would have v1
` ↔SVk−`+1 v

2
` , a contradiction.

Thus for some i ∈ {1, 2} and j ∈ {1, 2}\{i} there is a neighbour u
of vi` such that there is no neighbour w of vj` for which the
given condition holds. However, since vi` ↔SVk−` v

j
` , we can choose

neighbour w so that u↔SVk−`−1 w and πd(u, vi`) = πd(w, vj` ).
Now we can define vi`+1 = u and vj`+1 = w. We have shown
that k − ` − 1 = k − (` + 1) is the largest integer m for which
vi`+1 ↔SVm vj`+1 holds.

The above recursive definition yields a pair (v1, v2) of walks,
where vi = (vi0, v

i
1, . . . , v

i
k) for all i = 1, 2. Clearly conditions

(W1) and (W2) hold. Additionally, we know that k − k = 0 is
the largest integer m for which we have v1

k ↔SVm v2
k. However, if

k ≤ 2d− 3, then for each neighbour u of v1
k and w of v2

k we have
deg(u) = deg(w) and hence u↔SV0 w. It follows that for some
i ∈ {1, 2} and j ∈ {1, 2} \ {i} there is a neighbour u of vik such
that there is no neighbourw of vjk for which πd(u, vik) = πd(w, vjk).
If i = 1 and j = 2, this is equivalent to condition (W3). Otherwise,
we use Lemma 7 and Lemma 9 to swap the roles of i and j in a
similar manner as in the proof of Lemma 14.

In conclusion, we have shown that if k ≤ 2d−3, then (v1, v2) is
a PSW of length k in Gd. Now Lemma 16 implies that k = 2d− 3.
If k > 2d− 3, the claim is trivially true.

To prove Theorem 1, we want the root node ∅ to receive the
same messages from its neighbours ((1, 0)) and ((2, 1)). Lemma 17
shows that they are (2d− 3)-SV-bisimilar, but this is not enough:
they also need to have identical outgoing port numbers towards
node ∅. We will now define a port numbering of Gd based on the
generalised port numbering pd. Let f : {0, 1, . . . , d} → [d] be a
function such that f(0) = 1 and f(i) = i for i ≥ 1. Assume
that pd(v, i) = (u, j) for some nodes v, u and port numbers i, j. If
neither v nor u is a leaf node, we define p′d(v, f(i)) = (u, f(j)).
If v is a leaf node, we define p′d(v, 1) = (u, f(j)) and if u is a
leaf node, we define p′d(v, f(i)) = (u, 1). Due to the fact that
in rule (G3) of the definition of Gd we used b+2 instead of b2,
no node has both 0 and 1 as port numbers in pd. It follows that
p′d is a bijection from the set of input ports to the set of output
ports, and the set of outgoing as well as incoming port numbers for
each node v is {1, 2, . . . , deg(v)}. Observe that p′d(((1, 0)), 1) =
(∅, 1) and p′d(((2, 1)), 1) = (∅, 2). Now we can apply Lemma 6
to see that the (2d − 3)-SV-bisimilarity still holds, that is, we
have (Gd, ((1, 0)), p′d)↔SV2d−3 (Gd, ((2, 1)), p′d). Note that since
the distance from ((1, 0)) and ((2, 1)) to the leaf nodes is 2d− 1,
the fact that we have to use the port number 1 for the leaf nodes
does not affect the (2d− 3)-SV-bisimilarity.

LetA ∈ SV be an arbitrary algorithm and ∆ ≥ 2. LetG = G∆,
p = p′∆, v = ∅, u = ((1, 0)) and w = ((2, 1)). Consider the
execution of A in (G, p). Lemma 4 implies that the state of A in
the nodes u and w is identical in each round r = 0, 1, . . . , 2∆− 3.
Furthermore, we have π(u, v) = 1 = π(w, v). It follows that u
and w send the same message to node v in each round r + 1 =
1, 2, . . . , 2∆− 2. This concludes the proof of Theorem 1.



4. Separation by a Graph Problem
Theorem 1 shows that the simulation algorithm is optimal in a
certain sense. However, since we are interested in graph problems,
we want to separate the classes SV andMV by one. The following
theorem states that we can do this, and the lower bound is still linear
in ∆.

Theorem 2. There is a graph problem Π that can be solved in one
round by an algorithm in MV but that requires at least time T ,
where T (n,∆) ≥ ∆ for all odd ∆ ∈ N+ and T (n,∆) ≥ ∆ − 1
for all even ∆ ∈ N+, when solved by an algorithm in SV.

Let us first define formally the graph problem Π. We will
be working with graphs where each node is given as a local
input one of three colours: black (B), white (W) or grey (G). For
each graph (G, f) with local input from the set {B,W,G}, the
set Π(G, f) of solutions consists of mappings S : V → {B,W,G}
such that for each v ∈ V , S(v) is one of the local inputs having
the highest multiplicity among the neighbours of v. For example, if
node v has four neighbours of colour B, four neighbours of colour W
and two neighbours of colour G, then for each solution S we have
S(v) = B or S(v) = W. See Figure 4 below for an illustration of
two small problem instances. Our proof is based on generalising the
depicted construction to higher node degrees.
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Figure 4: AnMV-algorithm can find out in one communication
round whether it is run in the root node of graph (a) or graph (b),
while any SV-algorithm needs at least three communication rounds.

There is an algorithm in MV—and, in fact, in MB—that solves
problem Π in only one communication round: Each node broadcasts
its own colour to all its neighbours. Then, each node counts the
multiplicity of each message it received and outputs the one with
the highest multiplicity. Showing that this cannot be solved by any
algorithm in SV in less than ∆ communication rounds will require
somewhat more work. Luckily, we can handle the most tricky part
of the proof by making use of the proof of Theorem 1 in a black-box
manner.

We start by defining for each d = 2, 3, . . . two graphs, HB,d =
(VB,d, EB,d) and HW,d = (VW,d, EW,d). The constructions can be
seen as extensions of the graph Gd defined earlier, but now each
node is coloured with one of the three colours: black (B), white (W)
or grey (G). Colours B and W can be thought of as complements of
each other; we write B = W and W = B. Again, we define VB,d

recursively:

(H1) ∅ ∈ VB,d.

(H2) ((1, 0,B)), ((2, 1,B)), . . . , ((d, d− 1,B)) ∈ VB,d.

(H3) ((2, 1,W)), ((3, 2,W)), . . . , ((d, d− 1,W)) ∈ VB,d.

(H4) If (a1, a2, . . . , ai) ∈ VB,d, where i is odd and i ≤ 2d − 1,
then (a1, a2, . . . , ai, a

j
i+1) ∈ VB,d for all j = 1, 2, . . . , d−1,

where aji+1 = (cj1, c
j
2,G) is defined as follows. Let (b1, b2,

C) = ai, whereC ∈ {B,W}, and b+2 = 1 if b2 = 0, b+2 = b2
otherwise. Define

cj1 = min({1, 2, . . . , d} \ {b+2 , c
1
1, c

2
1, . . . , c

j−1
1 }),

cj2 = min({1, 2, . . . , d} \ {b1, c12, c22, . . . , cj−1
2 }).

(H5) If (a1, a2, . . . , ai) ∈ VB,d, where i is even and 2 ≤ i ≤
2d − 2, then (a1, a2, . . . , ai, a

j
i+1) ∈ VB,d for all j =

1, 2, . . . , d − 1, where aji+1 = (cj1, c
j
2, C) is defined as

follows. Let (d1, d2, C) = ai−1, where C ∈ {B,W}, and
(b1, b2,G) = ai. Define

cj1 = min({1, 2, . . . , d} \ {b2, c11, c21, . . . , cj−1
1 }),

cj2 = min({0, 1, . . . , d− 1} \ {b1, c12, c22, . . . , cj−1
2 }).

(H6) If (a1, a2, . . . , ai) ∈ VB,d, where i is even and 2 ≤ i ≤
2d − 2, then (a1, a2, . . . , ai, a

j
i+1) ∈ VB,d for all j =

1, 2, . . . , d−1, where aji+1 = (cj1, c
j
2, C) is defined as follows.

Let (d1, d2, C) = ai−1, where C ∈ {B,W}. Define

cj1 = min({2, 3, . . . , d} \ {c11, c21, . . . , cj−1
1 }),

cj2 = min({1, 2, . . . , d− 1} \ {c12, c22, . . . , cj−1
2 }).

The set EB,d of edges consists of all pairs {v, u}, where v =
(a1, a2, . . . , ai) ∈ VB,d and u = (a1, a2, . . . , ai, ai+1) ∈ VB,d

for some i ∈ {0, 1, . . .}. The sets VW,d and EW,d are given by the
same definition by replacing every occurrence of B with W and
vice versa. By rearranging the branches of the trees, we observe that
actually the only difference between HB,d and HW,d is the colours
in the branch that starts with the node ((1, 0, C)).

In this proof we work with the graphs HB,d and HW,d for a fixed
value of d. Hence, to simplify notation, we will write HB and HW

from now on.
We define colourings fB : VB → {B,W,G} and fW : VW →

{B,W,G} as follows. If v = (a1, a2, . . . , ai) ∈ VC for some
C ∈ {B,W} and i ≥ 1, and we have ai = (b1, b2, C

′), set
fC(v) = C′. If v = ∅ ∈ VC , set fC(v) = G. Notice that for
each solution S ∈ Π(HB, fB) we have S(∅) = B and for each
solution S ∈ Π(HW, fW) we have S(∅) = W.

Our port numbers are pairs (a,C), where a ∈ {0, 1, . . . , d}
and C ∈ {B,W,G}. Generalised port numberings pB and
pW for HB and HW, respectively, are defined as follows. Let
v = (a1, a2, . . . , ai) and u = (a1, a2, . . . , ai+1), where ai+1 =
(b1, b2, C), be nodes. Note that fB(u) = fW(u) = C. If
C ∈ {B,W}, define

pB(v, (b1, C)) = pW(v, (b1, C)) = (u, (b2,G)),

pB(u, (b2,G)) = pW(u, (b2,G)) = (v, (b1, C)).

If C = G, let C′ = fB(v) = fW(v) and define

pB(v, (b1,G)) = pW(v, (b1,G)) = (u, (b2, C
′)),

pB(u, (b2, C
′)) = pW(u, (b2, C

′)) = (v, (b1,G)).

Next we will define induced subgraphs ĤB and ĤW of HB

and HW, respectively. For C ∈ {B,W}, the vertex set V̂C of
ĤC consists of all vertices (a1, a2, . . . , ai) ∈ VC such that
fC((a1, a2, . . . , aj)) ∈ {C,G} for all j ∈ {0, 1, . . . , i}. That
is, a node v of HC is in the subgraph ĤC if and only if each node
in the unique path from the root node ∅ to node v is either grey or
of colour C. For each v = (a1, a2, . . . , ai) ∈ VC we denote the
corresponding node of ĤC by v̂ = (a1, a2, . . . , ai) ∈ V̂C .

For each C ∈ {B,W}, define a mapping gC : V̂C → Vd

as follows. Assume v̂ = (a1, a2, . . . , ai) ∈ V̂C , where aj =



(bj1, b
j
2, Cj) for each j. Now set gC(v̂) = (a′1, a

′
2, . . . , a

′
i), where

a′j = (bj1, b
j
2) for each j. By observing that the subgraph ĤC is

given by the rules (H1), (H2), (H4) and (H5) in the definition ofHC ,
and how they correspond to the rules (G1)–(G4) in the definition of
Gd, one can see that gC is a bijection, and in fact an isomorphism,
between ĤC and Gd. We can use gC to move bisimilarity results
from Gd to ĤC , as the following lemma shows.

Lemma 18. Let C ∈ {B,W}, r ∈ N and v̂, û ∈ V̂C . If
gC(v̂)↔SVr gC(û) and fC(v̂) = fC(û), then v̂ ↔SVr û.

Proof. The proof is by induction on r. Given the inductive hy-
pothesis and conditions (B1)–(B3) of Definition 3 for gC(v̂) and
gC(û), it is quite straightforward to check that the conditions also
hold for v̂ and û.

Next, we will define a partial mapping fv,u : VC → VC for each
pair of grey nodes v̂ and û in ĤC . Assume that v = (a1, a2, . . . , ai)
and u = (b1, b2, . . . , bj). If v′ = (a1, a2, . . . , ai, c1, c2, . . . , ci′) ∈
VC for some c1, c2, . . . , ci′ , and we have

fC((a1, a2, . . . , ai, c1)) = C

as well as

u′ = (b1, b2, . . . , bj , c1, c2, . . . , ci′) ∈ VC ,

then we define fv,u(v′) = u′. The idea here is that the subtrees
of HC that have the nodes v and u as their roots and that are
not contained in the subgraph ĤC (except for the root nodes) are
isomorphic (up to a certain distance). The mapping fv,u is a partial
isomorphism between such subtrees, as one can quite easily check.
In what follows, we will use fv,u to show that the r-SV-bisimilarity
of the nodes ((1, 0, C)) and ((2, 1, C)) in ĤC can be extended to
the supergraph HC .

For each C ∈ {B,W}, denote the nodes ∅, ((1, 0, C)) and
((2, 1, C)) of HC by vC , uC and wC , respectively. In accordance
with our previously introduced notation, denote the corresponding
nodes of the subgraph ĤC by v̂C , ûC and ŵC .

Lemma 19. Let v̂, û ∈ V̂C be grey nodes and let t ∈ N be such
that v ↔SVt u. If w ∈ dom(fv,u), dist(w, vC) < 2d − t and
dist(fv,u(w), vC) < 2d− t, then w↔SVt fv,u(w).

Proof. We proceed by induction on t. The base case t = 0 is straight-
forward: Since dist(w, vC) < 2d and dist(fv,u(w), vC) < 2d, we
have deg(w) = deg(fv,u(w)). Additionally, observe that we have
fC(w) = fC(fv,u(w)). It follows that we have w↔SV0 fv,u(w).

For the inductive case, assume that the claim holds for t = s and
that v ↔SVs+1 u. If w = v, then fv,u(w) = u and we have nothing
to prove. Hence, assume w 6= v. Denote the neighbours of w by
w1, w2, . . . , wk. Then the neighbours of fv,u(w) are fv,u(wi), i =
1, 2, . . . , k. We have wi ∈ dom(fv,u) for all i. Additionally, since
dist(w, vC) < 2d−(s+1) and dist(fv,u(w), vC) < 2d−(s+1),
we have dist(wi, vC) < 2d− s and dist(fv,u(wi), vC) < 2d− s
for all i. Now the inductive hypothesis implies that w↔SVs fv,u(w)
and wi ↔SVs fv,u(wi) for all i. Additionally, it follows imme-
diately from the definition of fv,u that we have πC(wi, w) =
πC(fv,u(wi), fv,u(w)) for all i. Now by Definition 3 we have
w↔SVs+1 fv,u(w). Hence the claim holds for t = s+ 1.

Lemma 20. Let t ∈ N and let v̂, û ∈ V̂C be such that dist(v̂, v̂C) <
2d− t and dist(û, v̂C) < 2d− t. If v̂ ↔SVt û, then v ↔SVt u.

Proof. We prove the claim by induction on t. The base case t = 0 is
easy: If v̂ ↔SV0 û, then fC(v̂) = fC(û), and thus fC(v) = fC(u).
As v and u are of the same colour and neither of them is a leaf node,
deg(v) = deg(u). Hence v ↔SV0 u.

For the inductive step, assume that the claim holds for t = s
and that v̂ ↔SVs+1 û, where dist(v̂, v̂C) < 2d − (s + 1) and
dist(û, v̂C) < 2d− (s+ 1). Denote the neighbours of v̂ and û by
v̂1, v̂2, . . . , v̂d and û1, û2, . . . , ûd, respectively. We have v̂ ↔SVs û,
and by definition, for each v̂i there is ûji such that v̂i ↔SVs ûji and
πC(v̂i, v̂) = πC(ûji , û), and vice versa. We have dist(v̂i, v̂C) <
2d− s and dist(ûi, v̂C) < 2d− s for all i. Now the inductive hypo-
thesis implies that v ↔SVs u, vi ↔SVs uji for all i and vij ↔SVs uj

for all j.
Since v ↔SVs u, nodes v and u are of the same colour. If they are

of colour C, they do not have neighbours other than v1, v2, . . . , vd
and u1, u2, . . . , ud, respectively. Then it follows from the definition
that v ↔SVs+1 u. Otherwise, v and u are grey, and in addition to vi
and ui, i = 1, 2, . . . , d, they have neighbours generated by rule (H3)
or rule (H6). Denote those neighbours by v′1, v

′
2, . . . , v

′
d−1 and

u′1, u
′
2, . . . , u

′
d−1, respectively, such that we have fv,u(v′i) = u′i for

all i. Observe that dist(v′i, vC) < 2d−s and dist(u′i, vC) < 2d−s
for all i. Now Lemma 19 shows that v′i ↔SVs u′i for all i. In addition,
the definition of fv,u implies that πC(v′i, v) = πC(u′i, u) for all
i. We have shown that conditions (B2) and (B3) hold also for the
additional neighbours, and consequently v ↔SVs+1 u. Hence the claim
is true for t = s+ 1.

Now we can combine our previous results to obtain bisim-
ilarity between certain nodes in the graph HC for each C ∈
{B,W}. Lemma 17 shows that ((1, 0))↔SV2d−3 ((2, 1)), where
((1, 0)) and ((2, 1)) are nodes in the graph Gd. Observe that
gC(ûC) = ((1, 0)) and gC(ŵC) = ((2, 1)). Now Lemma 18 im-
plies that ûC ↔SV2d−3 ŵC . We have dist(ûC , v̂C) = 1 < 2d−(2d−
3) and dist(ŵC , v̂C) = 1 < 2d− (2d− 3). Hence it follows from
Lemma 20 that uC ↔SV2d−3 wC , where uC and wC are neighbours
of vC in the graph HC .

As in the proof of Theorem 1, we define a port numbering p′C
for each C ∈ {B,W} based on the generalised port numbering pC .
Again, we need to preserve bisimilarity as well as have identical
outgoing port numbers from nodes uC and wC towards node vC .
Define function f from the set of all generalised ports of HC to
[2d− 1] as follows: f(1,B) = f(1,W) = 1, f(i,B) = 2i− 1 and
f(i,W) = 2i−2 for all i = 2, 3, . . . , d, f(0,G) = 1 and f(i,G) =
i for all i = 1, 2, . . . , d. Then, if pC(v, a) = (u, b) for some non-
leaf nodes v, u and port numbers a, b, set p′C(v, f(a)) = (u, f(b)).
Again, use the port number 1 for the leaf nodes. Without too much
effort, one can check that p′C is indeed a valid port numbering of
HC , and that we have π′C(uC , vC) = 1 = π′C(wC , vC). Lemma 6
implies that (HC , fC , uC , p

′
C)↔SV2d−3 (HC , fC , wC , p

′
C).

To reach our ultimate goal, we need to define one more mapping.
Define h : VB → VW as follows: if v = (a1, a2, . . . , ai) ∈ VB,
where i ≥ 1 and a1 = (b1, b2, C) for some b1 ≥ 2, set h(v) = u,
where u = (a1, a2, . . . , ai) ∈ VW. Additionally, set h(vB) = vW.
Thus, there is one subtree starting from a child of vB, the one having
the node uB = ((1, 0,B)) as its root, that is excluded from the
domain of h. Similarly, the subtree having uW = ((1, 0,W)) as its
root is excluded from the range of h. See Figure 5 for an illustration
of the situation.

Lemma 21. Let v ∈ VB and u ∈ VW be nodes such that h(v) = u.
Then for all t = 0, 1, . . . , 2d − 2 we have (HB, fB, v, p

′
B)↔SVt

(HW, fW, u, p
′
W).

Proof. We prove the claim by induction on t. The base case t = 0
is trivial: if h(v) = u, then by definition of h we have deg(v) =
deg(u) and fB(v) = fW(u) and therefore v ↔SV0 u.

For the inductive step, suppose that the claim holds for t = s <
2d − 2. Consider two arbitrary nodes v ∈ VB and u ∈ VW such
that h(v) = u. By the inductive hypothesis we have v ↔SVs u. If
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Figure 5: Graphs HB,4 and HW,4 up to distance one from the root
nodes. The dashed lines represent r-SV-bisimilarity between nodes.

v 6= vB, all the neighbours of v are in the domain of h and all
the neighbours of u are in the range of h. Furthermore, if w is
a neighbour of v, we have π′B(w, v) = π′W(h(w), u), and by the
inductive hypothesis, w↔SVs h(w). Now Definition 3 implies that
v ↔SVs+1 u.

If v = vB, v has one neighbour that is not in dom(h). That
neighbour is uB = ((1, 0,B)). Similarly, h(v) = vW has one neigh-
bour that is not in the range of h, namely uW = ((1, 0,W)).
However, as shown above, we have uB ↔SV2d−3 wB, and thus
uB ↔SVs wB. Since we have also wB ↔SVs h(wB), Lemma 5 im-
plies that uB ↔SVs h(wB). Additionally, we have

π′B(uB, v) = π′B(wB, v) = π′B(h(wB), u).

Similarly, we have uW ↔SVs wW and wW ↔SVs h−1(wW), from
which we get uW ↔SVs h−1(wW). Additionally,

π′W(uW, u) = π′W(wW, u) = π′W(h−1(wW), v).

We have shown that conditions (B1)–(B3) hold even if considering
also neighbours not handled by the mapping h, and consequently
we have v ↔SVs+1 u. Thus the claim holds for t = s+ 1.

Let d ≥ 2 and ∆ = 2d − 1. Then HB,d, HW,d ∈ F(∆).
Let A ∈ SV be any algorithm with a running time at most
∆−1 = 2d−2. Consider the execution ofA in the nodes vB ∈ VB,d

and vW ∈ VW,d. Now Lemma 21 together with Lemma 4 implies
that A produces the same output in vB and vW. Recall that for any
valid solutions S ∈ Π(HB,d, fB) and S′ ∈ Π(HW,d, fW) we have
S(vB) 6= S′(vW). Hence A does not solve the problem Π. This
concludes the proof of Theorem 2.
Remark 22. Note that we could define a similar problem without
local inputs, by encoding the colours in the structure of the graph.
One way to do this is to add one new neighbour to each black node
and two new neighbours to each white node. If d ≥ 3, this does not
increase the maximum degree of the graph. Then we could define
the set of solutions to consist of, for example, mappings S such that
S(v) = 1 if node v has an odd number of neighbours of an odd
degree and S(v) = 0 otherwise. However, for illustrative purposes,
it was beneficial the use a colouring instead.
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