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Publications

Brief overview of two papers:

Hella, Järvisalo, Kuusisto, Laurinharju, Lempiäinen, Luosto, Suomela
and Virtema:
Weak models of distributed computing, with connections to
modal logic
PODC 2012, Distributed Computing 2015

Lempiäinen:
Ability to count messages is worth Θ(∆) rounds in distributed
computing
LICS 2016
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The model of computation

A simple finite undirected graph,
whose each node is a deterministic
state machine that

runs the same algorithm,

can communicate with its
neighbours,

produces a local output.

Anonymous nodes ⇒ a weak model
of computation.
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Communication in synchronous rounds

v

←
a

b
→

In every round, each node v

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

Eventually, each node halts and
announces its own local output.

4 / 15



Communication in synchronous rounds

v

c →
←
d

In every round, each node v

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

Eventually, each node halts and
announces its own local output.

4 / 15



Communication in synchronous rounds

v

In every round, each node v

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

Eventually, each node halts and
announces its own local output.

4 / 15



Communication in synchronous rounds

v

In every round, each node v

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

Eventually, each node halts and
announces its own local output.

4 / 15



Focus on communication, not computation

∆ = 3
n = 6

The running time of an algorithm is
the number of communications
rounds.

The running time may depend on two
parameters:

the maximum degree of the
graph, ∆,

the number of nodes, n.
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Graph problems

We study graph problems where

the problem instance is the
communication graph
G = (V ,E ),

a solution is a mapping
S : V → Y from nodes to local
outputs.

Often the solution is an encoding of a
subset of vertices or edges of the
graph.

One typical example is the minimum
vertex cover.
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PODC 2012: seven variants of the model

Options for sending messages:

a port number for each
neighbour (V),

broadcast the same message to
all neighbours (B).

Options for receiving messages:

a port number for each
neighbour (V),

receive a multiset of messages
(M),

receive a set of messages (S).

v
1

←
a 3

b

→

2 c
→

Node v sends a vector (a, c, b).
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PODC 2012: seven variants of the model

Options for sending messages:

a port number for each
neighbour (V),

broadcast the same message to
all neighbours (B).

Options for receiving messages:

a port number for each
neighbour (V),

receive a multiset of messages
(M),

receive a set of messages (S).

We can require the outgoing and incoming port numbers to be consistent
⇒ the port-numbering model (VVc).
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PODC 2012: a hierarchy of complexity classes

VVc

VV

MV

SV

VB

MB

SB

VVc

VV

6=

MV

=

SV

=

VB

MB

=

SB

6=

6=

Theorem

SB ( MB = VB ( SV = MV = VV ( VVc.
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PODC 2012: connections to modal logic

The constant-time variant of each of the seven complexity classes can be
characterised by a modal logic such that there is a canonical one-to-one
correspondence between algorithms and modal formulas.

Example: graded modal logic (GML),

ϕ := qn | (ϕ ∧ ϕ) | ¬ϕ | ♦ϕ, | ♦≥kϕ,

where qn are proposition symbols and k ∈ N.

G , v |= qn iff degree(v) = n,

G , v |= ♦≥kϕ iff
∣∣{w ∈ V : (v ,w) ∈ E and G ,w |= ϕ}

∣∣ ≥ k.

GML corresponds to the complexity class MB (receive a multiset, send by
broadcasting).
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PODC 2012: connections to modal logic

In each variant of modal logic, one can characterise definability by a variant
of bisimulation.

A nonempty relation Z ⊆ V × V ′ is a graded bisimulation between
G = (V ,E , τ) and G ′ = (V ′,E ′, τ ′) if the following conditions hold.

1 If (v , v ′) ∈ Z , then v ∈ τ(qn) iff v ′ ∈ τ ′(qn) for each qn.

2 If (v , v ′) ∈ Z and X ⊆ E (v), then there is a set X ′ ⊆ E ′(v ′) such that
|X ′| = |X | and for each w ′ ∈ X ′ there is a w ∈ X with (w ,w ′) ∈ Z .

3 If (v , v ′) ∈ Z and X ′ ⊆ E ′(v ′), then there is a set X ⊆ E (v) such that
|X | = |X ′| and for each w ∈ X there is a w ′ ∈ X ′ with (w ,w ′) ∈ Z .

We use bisimulation to derive the separation results between the complexity
classes.
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The relationship of MV and SV

The simulation results used to show the equivalence of complexity classes
do not increase the running time, except for one:

Theorem (PODC 2012)

Assume that there is an MV-algorithm A that solves a problem Π in time
T . Then there is an SV-algorithm B that solves Π in time T + 2∆− 2.

Is this result tight?
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LICS 2016: the simulation overhead is tight

Theorem

For each ∆ ≥ 2 there is a port-numbered graph G∆ with nodes u, v ,w such
that when executing any SV-algorithm A in G∆, u receives identical
messages from its neighbours v and w in rounds 1, 2, . . . , 2∆− 2.

We can also separate the models by a graph problem:

Theorem

There is a graph problem Π that can be solved in one round by an
MV-algorithm but that requires at least ∆− 1 rounds for all ∆ ≥ 2, when
solved by an SV-algorithm.
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Example: separating SV and MV

u

1

1

1
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1
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1
3

v

1

1

1

3

1

2

2

2

1

2

1

21
3

Output 1 if there is an even number of neighbours of even degree, 0
otherwise.
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Generalisation: graph G∆ (here ∆ = 4)
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The blue nodes are bisimilar up to the distance 2∆− 2.



Conclusion

VVc
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MV

=
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=
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We defined seven complexity
classes and characterised the
containment relations.

Each constant-time class
corresponds to a variant of
modal logic.

Only in one case there is
overhead in simulating a stronger
model by a weaker one, and that
overhead is unavoidable.

Thanks! Questions?
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