
Bisimulation and Modal Logic in Distributed Computing

Tuomo Lempiäinen
Distributed Algorithms group, Department of Computer Science, Aalto University

(joint work with Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju,
Kerkko Luosto, Jukka Suomela and Jonni Virtema)

Computational Logic Day 2016
December 8, 2016 @ Aalto University

1 / 15

Publications

Brief overview of two papers:

Hella, Järvisalo, Kuusisto, Laurinharju, Lempiäinen, Luosto, Suomela
and Virtema:
Weak models of distributed computing, with connections to
modal logic
PODC 2012, Distributed Computing 2015

Lempiäinen:
Ability to count messages is worth Θ(∆) rounds in distributed
computing
LICS 2016

2 / 15

The model of computation

A simple finite undirected graph,
whose each node is a deterministic
state machine that

runs the same algorithm,

can communicate with its
neighbours,

produces a local output.

Anonymous nodes ⇒ a weak model
of computation.

3 / 15

The model of computation

A simple finite undirected graph,
whose each node is a deterministic
state machine that

runs the same algorithm,

can communicate with its
neighbours,

produces a local output.

Anonymous nodes ⇒ a weak model
of computation.

3 / 15

Communication in synchronous rounds

v

←
a

b
→

In every round, each node v

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

Eventually, each node halts and
announces its own local output.

4 / 15

Communication in synchronous rounds

v

c →
←
d

In every round, each node v

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

Eventually, each node halts and
announces its own local output.

4 / 15

Communication in synchronous rounds

v

In every round, each node v

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

Eventually, each node halts and
announces its own local output.

4 / 15

Communication in synchronous rounds

v

In every round, each node v

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

Eventually, each node halts and
announces its own local output.

4 / 15

Focus on communication, not computation

∆ = 3
n = 6

The running time of an algorithm is
the number of communications
rounds.

The running time may depend on two
parameters:

the maximum degree of the
graph, ∆,

the number of nodes, n.

5 / 15

Graph problems

We study graph problems where

the problem instance is the
communication graph
G = (V ,E),

a solution is a mapping
S : V → Y from nodes to local
outputs.

Often the solution is an encoding of a
subset of vertices or edges of the
graph.

One typical example is the minimum
vertex cover.

6 / 15

Graph problems

Y = {0, 1}

We study graph problems where

the problem instance is the
communication graph
G = (V ,E),

a solution is a mapping
S : V → Y from nodes to local
outputs.

Often the solution is an encoding of a
subset of vertices or edges of the
graph.

One typical example is the minimum
vertex cover.

6 / 15

PODC 2012: seven variants of the model

Options for sending messages:

a port number for each
neighbour (V),

broadcast the same message to
all neighbours (B).

Options for receiving messages:

a port number for each
neighbour (V),

receive a multiset of messages
(M),

receive a set of messages (S).

v
1

←
a 3

b

→

2 c
→

Node v sends a vector (a, c, b).

7 / 15

PODC 2012: seven variants of the model

Options for sending messages:

a port number for each
neighbour (V),

broadcast the same message to
all neighbours (B).

Options for receiving messages:

a port number for each
neighbour (V),

receive a multiset of messages
(M),

receive a set of messages (S).

v
1

←
a 3

a

→

2 a
→

Node v broadcasts message a.

7 / 15

PODC 2012: seven variants of the model

Options for sending messages:

a port number for each
neighbour (V),

broadcast the same message to
all neighbours (B).

Options for receiving messages:

a port number for each
neighbour (V),

receive a multiset of messages
(M),

receive a set of messages (S).

v
1

a→
3

←

a

2 ←
b

Node v receives a vector (a, b, a).

7 / 15

PODC 2012: seven variants of the model

Options for sending messages:

a port number for each
neighbour (V),

broadcast the same message to
all neighbours (B).

Options for receiving messages:

a port number for each
neighbour (V),

receive a multiset of messages
(M),

receive a set of messages (S).

v
1

a→
3

←

a

2 ←
b

Node v receives a multiset {a, a, b}.

7 / 15

PODC 2012: seven variants of the model

Options for sending messages:

a port number for each
neighbour (V),

broadcast the same message to
all neighbours (B).

Options for receiving messages:

a port number for each
neighbour (V),

receive a multiset of messages
(M),

receive a set of messages (S).

v
1

a→
3

←

a

2 ←
b

Node v receives a set {a, b}.

7 / 15

PODC 2012: seven variants of the model

Options for sending messages:

a port number for each
neighbour (V),

broadcast the same message to
all neighbours (B).

Options for receiving messages:

a port number for each
neighbour (V),

receive a multiset of messages
(M),

receive a set of messages (S).

We can require the outgoing and incoming port numbers to be consistent
⇒ the port-numbering model (VVc).

7 / 15

PODC 2012: a hierarchy of complexity classes

VVc

VV

MV

SV

VB

MB

SB

VVc

VV

6=

MV

=

SV

=

VB

MB

=

SB

6=

6=

Theorem

SB (MB = VB (SV = MV = VV (VVc.

8 / 15

PODC 2012: a hierarchy of complexity classes

VVc

VV

MV

SV

VB

MB

SB

VVc

VV

6=

MV

=

SV

=

VB

MB

=

SB

6=

6=

Theorem

SB (MB = VB (SV = MV = VV (VVc.

8 / 15

PODC 2012: connections to modal logic

The constant-time variant of each of the seven complexity classes can be
characterised by a modal logic such that there is a canonical one-to-one
correspondence between algorithms and modal formulas.

Example: graded modal logic (GML),

ϕ := qn | (ϕ ∧ ϕ) | ¬ϕ | ♦ϕ, | ♦≥kϕ,

where qn are proposition symbols and k ∈ N.

G , v |= qn iff degree(v) = n,

G , v |= ♦≥kϕ iff
∣∣{w ∈ V : (v ,w) ∈ E and G ,w |= ϕ}

∣∣ ≥ k.

GML corresponds to the complexity class MB (receive a multiset, send by
broadcasting).

9 / 15

PODC 2012: connections to modal logic

The constant-time variant of each of the seven complexity classes can be
characterised by a modal logic such that there is a canonical one-to-one
correspondence between algorithms and modal formulas.

Example: graded modal logic (GML),

ϕ := qn | (ϕ ∧ ϕ) | ¬ϕ | ♦ϕ, | ♦≥kϕ,

where qn are proposition symbols and k ∈ N.

G , v |= qn iff degree(v) = n,

G , v |= ♦≥kϕ iff
∣∣{w ∈ V : (v ,w) ∈ E and G ,w |= ϕ}

∣∣ ≥ k.

GML corresponds to the complexity class MB (receive a multiset, send by
broadcasting).

9 / 15

PODC 2012: connections to modal logic

The constant-time variant of each of the seven complexity classes can be
characterised by a modal logic such that there is a canonical one-to-one
correspondence between algorithms and modal formulas.

Example: graded modal logic (GML),

ϕ := qn | (ϕ ∧ ϕ) | ¬ϕ | ♦ϕ, | ♦≥kϕ,

where qn are proposition symbols and k ∈ N.

G , v |= qn iff degree(v) = n,

G , v |= ♦≥kϕ iff
∣∣{w ∈ V : (v ,w) ∈ E and G ,w |= ϕ}

∣∣ ≥ k.

GML corresponds to the complexity class MB (receive a multiset, send by
broadcasting).

9 / 15

PODC 2012: connections to modal logic

In each variant of modal logic, one can characterise definability by a variant
of bisimulation.

A nonempty relation Z ⊆ V × V ′ is a graded bisimulation between
G = (V ,E , τ) and G ′ = (V ′,E ′, τ ′) if the following conditions hold.

1 If (v , v ′) ∈ Z , then v ∈ τ(qn) iff v ′ ∈ τ ′(qn) for each qn.

2 If (v , v ′) ∈ Z and X ⊆ E (v), then there is a set X ′ ⊆ E ′(v ′) such that
|X ′| = |X | and for each w ′ ∈ X ′ there is a w ∈ X with (w ,w ′) ∈ Z .

3 If (v , v ′) ∈ Z and X ′ ⊆ E ′(v ′), then there is a set X ⊆ E (v) such that
|X | = |X ′| and for each w ∈ X there is a w ′ ∈ X ′ with (w ,w ′) ∈ Z .

We use bisimulation to derive the separation results between the complexity
classes.

10 / 15

The relationship of MV and SV

The simulation results used to show the equivalence of complexity classes
do not increase the running time, except for one:

Theorem (PODC 2012)

Assume that there is an MV-algorithm A that solves a problem Π in time
T . Then there is an SV-algorithm B that solves Π in time T + 2∆− 2.

Is this result tight?

11 / 15

LICS 2016: the simulation overhead is tight

Theorem

For each ∆ ≥ 2 there is a port-numbered graph G∆ with nodes u, v ,w such
that when executing any SV-algorithm A in G∆, u receives identical
messages from its neighbours v and w in rounds 1, 2, . . . , 2∆− 2.

We can also separate the models by a graph problem:

Theorem

There is a graph problem Π that can be solved in one round by an
MV-algorithm but that requires at least ∆− 1 rounds for all ∆ ≥ 2, when
solved by an SV-algorithm.

12 / 15

Example: separating SV and MV

u

1

1

1

3

1

2

3

2

1

2

1

21
3

1
3

v

1

1

1

3

1

2

2

2

1

2

1

21
3

Output 1 if there is an even number of neighbours of even degree, 0
otherwise.

13 / 15

Generalisation: graph G∆ (here ∆ = 4)

14 / 15

1

1

2

2

1

1

1

3

3

4

3

3

1

1

1

2

2

4

4

4

1

1

1

2

2

3

1

2

1

2

1

2

1

3

3

4

3

3

1

1

1

2

2

4

4

4

1

1

1

2

2

3

2

3

1

1

1

2

2

3

3

4

2

3

1

1

1

3

2

4

4

4

1

1

1

2

2

3

3

4

1

1

1

2

2

3

3

4

2

2

1

1

1

3

3

4

3

4

1

1

1

2

2

4

...

The blue nodes are bisimilar up to the distance 2∆− 2.

Conclusion

VVc

VV

6=

MV

=

SV

=

VB

MB

=

SB

6=

6=

We defined seven complexity
classes and characterised the
containment relations.

Each constant-time class
corresponds to a variant of
modal logic.

Only in one case there is
overhead in simulating a stronger
model by a weaker one, and that
overhead is unavoidable.

Thanks! Questions?

15 / 15

Conclusion

VVc

VV

6=

MV

=

SV

=

VB

MB

=

SB

6=

6=

We defined seven complexity
classes and characterised the
containment relations.

Each constant-time class
corresponds to a variant of
modal logic.

Only in one case there is
overhead in simulating a stronger
model by a weaker one, and that
overhead is unavoidable.

Thanks! Questions?

15 / 15

	Introduction to distributed computing
	Different models of computation

