
On the existence of constant-space non-constant-time
distributed algorithms

Tuomo Lempiäinen

(joint work with Jukka Suomela)

Helsinki Algorithms Seminar, Aalto University
1st December 2016

1 / 17

Introduction

We study distributed algorithms in bounded-degree graphs, with
constant-size local input.

Constant running time implies constant number of states.

What about the other direction?

Does there exist a graph problem that can be solved in constant-space
but requires more than constant time?

If yes, in which class of graphs? (E.g. the class of path graphs would
be trivial.)

2 / 17

Model of computation

1

3 1

3

2 1

A simple finite connected undirected
graph, with constant-size local inputs.

An identical deterministic state machine
on each node.

Computation proceeds in synchronous
rounds:

1 broadcast a message to neighbours,
2 receive a set of messages,
3 set a new state based on previous state

and received messages.

Each node eventually halts and produces
an output.

3 / 17

Model of computation

1

3 1

3

2 1

A simple finite connected undirected
graph, with constant-size local inputs.

An identical deterministic state machine
on each node.

Computation proceeds in synchronous
rounds:

1 broadcast a message to neighbours,
2 receive a set of messages,
3 set a new state based on previous state

and received messages.

Each node eventually halts and produces
an output.

3 / 17

Complexity measures

1

3 1

3

2 1

Given an algorithm (a state machine),

its running time or time complexity is
the number of communication rounds
until all nodes have halted,

its space complexity is the number of
states that are visited at least once,

as a function of n, over all graphs of n nodes
and of maximum degree at most ∆.

4 / 17

Warm-up: count distance mod 2

0

1 1

0 0 0 0

No local input; local outputs from
{0, 1,⊥}.
If the graph is a binary tree where each
edge is directed towards the leaves,
output the distance modulo 2 to the
closest leaf node. Otherwise, output ⊥.

Edge directions can be encoded in the
structure of the graph.

If the graph is not of the desired type, at
least one node can detect it locally and
inform other nodes.

The root node needs Θ(log n)
communication rounds until it knows its
parity.

5 / 17

Warm-up: count distance mod 2

0

1 1

0 0 0 0

No local input; local outputs from
{0, 1,⊥}.
If the graph is a binary tree where each
edge is directed towards the leaves,
output the distance modulo 2 to the
closest leaf node. Otherwise, output ⊥.

Edge directions can be encoded in the
structure of the graph.

If the graph is not of the desired type, at
least one node can detect it locally and
inform other nodes.

The root node needs Θ(log n)
communication rounds until it knows its
parity.

5 / 17

Graphs of maximum degree 2

The following was already known:

Theorem (Kuusisto 2014)

There exist a distributed algorithm that always halts but has a non-constant
running time in the class of finite graphs of maximum degree 2.

However, this algorithm has a non-constant space complexity.

6 / 17

The main result

Theorem

There exists a graph decision problem P and a constant-space distributed
algorithm A such that

algorithm A solves problem P,

P requires at least a linear running time.

7 / 17

Preliminaries

The Thue–Morse sequence is a sequence over {0, 1} obtained by

starting with 0,
appending the Boolean complement of the sequence obtained so far.

First steps:
0
01
0110
01101001
0110100110010110

...

Interesting property: does not contain any cubes, i.e. subwords xxx for
any x ∈ {0, 1}∗

8 / 17

Preliminaries

The Thue–Morse sequence is a sequence over {0, 1} obtained by

starting with 0,
appending the Boolean complement of the sequence obtained so far.

First steps:
0
01
0110
01101001
0110100110010110

...

Interesting property: does not contain any cubes, i.e. subwords xxx for
any x ∈ {0, 1}∗

8 / 17

Preliminaries

An equivalent definition by a Lindenmayer system:

variables: 0, 1
constants: none
start: 0
production rules: (0 7→ 01), (1 7→ 10)

9 / 17

The decision problem

Local inputs from {A,B,C} × {0, 1, }.
Local outputs from {yes, no}.

An instance is a yes-instance if and only if

the graph is a path,
first parts of the local inputs define a consistent orientation:
ABCABCABC. . . ,
second parts of the local inputs define a valid word over {0, 1, }.

Valid words are defined recursively as follows:

0 is valid,
if x is valid and y is obtained from x by applying substitutions
(0 7→ 0 1 1 0) and (1 7→ 1 0 0 1) to each occurrence of 0 and 1, then y
is valid.

10 / 17

The decision problem

Local inputs from {A,B,C} × {0, 1, }.
Local outputs from {yes, no}.

An instance is a yes-instance if and only if

the graph is a path,
first parts of the local inputs define a consistent orientation:
ABCABCABC. . . ,
second parts of the local inputs define a valid word over {0, 1, }.

Valid words are defined recursively as follows:

0 is valid,
if x is valid and y is obtained from x by applying substitutions
(0 7→ 0 1 1 0) and (1 7→ 1 0 0 1) to each occurrence of 0 and 1, then y
is valid.

10 / 17

The algorithm

Denote the end of the path by |.
Denote one or more x ’s by x+.

Each node v does the following:
1 Verify the orientation: 3 different symbols from {A,B,C, |} can be found

within the radius-1 neighbourhood of v ; otherwise abort.
2 Verify the word locally: radius-1 neighbourhood is in
{| 0, 0 0, 1 1, 0 1, 0 , 1 }; otherwise abort.

3 . . .

Aborting means that the node sends message “abort” to its neighbours,
halts and outputs no. Whenever the node receives such a message, it
passes it on, halts and outputs “no”.

11 / 17

The algorithm

Each node v does the following:
3 Set current symbol c(v) to be the local input from {0, 1, }. Repeat the

following steps:

1 Gather two buffers, L and R. Initially, broadcast if c(v) = , otherwise
c(v)+. If you receive L from the left, send r(L, c(v)) to the right, where
r(L, c(v)) = L if L = Ac(v)+ for some A, otherwise r(L, c(v)) = L if
c(v) = , otherwise r(L, c(v)) = Lc(v)+. Handle R similarly. Continue
until both L and R contain eight ’s (or an end-of-the-path marker |).
This can be done in constant space.

2 If Lc(v)R matches | 0 + | or | 0 + 1 + 1 + 0 + |, halt and output yes.
3 Apply the following substitution to the word Lc(v)R:

0+ 1+ 1+ 0+ 1+ 0+ 0+ 1+ 7→ 0+00+00+00+ 1+11+11+11+ .
If the pattern matches in several positions, and they result in different
new symbols for node v , abort. If the pattern does not match, abort.
Otherwise, update c(v) according to the substitution.

This constitutes one phase in the execution.

12 / 17

The algorithm

Each node v does the following:
3 Set current symbol c(v) to be the local input from {0, 1, }. Repeat the

following steps:

1 Gather two buffers, L and R. Initially, broadcast if c(v) = , otherwise
c(v)+. If you receive L from the left, send r(L, c(v)) to the right, where
r(L, c(v)) = L if L = Ac(v)+ for some A, otherwise r(L, c(v)) = L if
c(v) = , otherwise r(L, c(v)) = Lc(v)+. Handle R similarly. Continue
until both L and R contain eight ’s (or an end-of-the-path marker |).
This can be done in constant space.

2 If Lc(v)R matches | 0 + | or | 0 + 1 + 1 + 0 + |, halt and output yes.
3 Apply the following substitution to the word Lc(v)R:

0+ 1+ 1+ 0+ 1+ 0+ 0+ 1+ 7→ 0+00+00+00+ 1+11+11+11+ .
If the pattern matches in several positions, and they result in different
new symbols for node v , abort. If the pattern does not match, abort.
Otherwise, update c(v) according to the substitution.

This constitutes one phase in the execution.

12 / 17

The algorithm

Each node v does the following:
3 Set current symbol c(v) to be the local input from {0, 1, }. Repeat the

following steps:

1 Gather two buffers, L and R. Initially, broadcast if c(v) = , otherwise
c(v)+. If you receive L from the left, send r(L, c(v)) to the right, where
r(L, c(v)) = L if L = Ac(v)+ for some A, otherwise r(L, c(v)) = L if
c(v) = , otherwise r(L, c(v)) = Lc(v)+. Handle R similarly. Continue
until both L and R contain eight ’s (or an end-of-the-path marker |).
This can be done in constant space.

2 If Lc(v)R matches | 0 + | or | 0 + 1 + 1 + 0 + |, halt and output yes.
3 Apply the following substitution to the word Lc(v)R:

0+ 1+ 1+ 0+ 1+ 0+ 0+ 1+ 7→ 0+00+00+00+ 1+11+11+11+ .
If the pattern matches in several positions, and they result in different
new symbols for node v , abort. If the pattern does not match, abort.
Otherwise, update c(v) according to the substitution.

This constitutes one phase in the execution.

12 / 17

The algorithm

We call the sequence of all the current symbols c(v) a configuration.

Lemma

Assume that in the current configuration, each maximal subword of 0’s or
1’s is of length `. If the algorithm is executed for one phase and no node
aborts, in the resulting configuration the length is 4` + 3.

This guarantees that

each phase completes in a finite amount of time,

nodes agree on when to start a new phase.

It also follows that the algorithm always halts in finite graphs.

13 / 17

Accepting a yes-instance

We call a word x i
1 x i

2 . . . x i
p a padded Thue–Morse word of length p if

x1x2 . . . xp is a prefix of the Thue–Morse sequence.

Lemma

If the current configuration is a padded Thue–Morse word of length 4k and
the algorithm is executed for one phase without aborting, the resulting
configuration is a padded Thue–Morse word of length 4k−1.

From this we can derive that in a yes-instance, each node eventually
outputs “yes”.

14 / 17

Rejecting a no-instance

Lemma

In a no-instance, each node eventually outputs “no”.

Proof idea:

Assume for a contradiction that a no-instance gets accepted.

If there is a yes-instance of the same size, it also gets accepted.

Consider the first phase after which the configurations are identical in
both cases.

In the previous configurations, there were two different subwords that
were replaced by 0+ 1+ . This can be shown to be a contradiction.

Cycle graphs and paths of wrong length can also be shown to be
rejected.

15 / 17

Running time

Let ` be the length of maximal subwords of 0’s or 1’s. Gathering the
buffers takes 8` + 8 = 8(` + 1) rounds.

Recall the lemma: the length of the maximal subwords increases from `
to 4` + 3 in one phase.

There are roughly 1
2 log n phases before halting.

The running time is thus
8(1 + 1) + 8(7 + 1) + 8(31 + 1) + · · ·+ 8(22((log n)/2)−1) ≤ 8n rounds.

This is asymptotically tight.

16 / 17

Running time

Let ` be the length of maximal subwords of 0’s or 1’s. Gathering the
buffers takes 8` + 8 = 8(` + 1) rounds.

Recall the lemma: the length of the maximal subwords increases from `
to 4` + 3 in one phase.

There are roughly 1
2 log n phases before halting.

The running time is thus
8(1 + 1) + 8(7 + 1) + 8(31 + 1) + · · ·+ 8(22((log n)/2)−1) ≤ 8n rounds.

This is asymptotically tight.

16 / 17

Conclusion

We presented graph problems with

logarithmic (maximum degree 3) and
linear (maximum degree 2)

time complexity, when restricted to constant space.

Possible future direction: other time complexity classes under the
constant-space assumption?

Thanks!

17 / 17

Conclusion

We presented graph problems with

logarithmic (maximum degree 3) and
linear (maximum degree 2)

time complexity, when restricted to constant space.

Possible future direction: other time complexity classes under the
constant-space assumption?

Thanks!

17 / 17

