On the existence of constant-space non-constant-time distributed algorithms

Tuomo Lempiäinen
(joint work with Jukka Suomela)

Helsinki Algorithms Seminar, Aalto University
1st December 2016

Introduction

- We study distributed algorithms in bounded-degree graphs, with constant-size local input.
- Constant running time implies constant number of states.
- What about the other direction?
- Does there exist a graph problem that can be solved in constant-space but requires more than constant time?
- If yes, in which class of graphs? (E.g. the class of path graphs would be trivial.)

Model of computation

- A simple finite connected undirected graph, with constant-size local inputs.
- An identical deterministic state machine on each node.
- Computation proceeds in synchronous rounds:
(1) broadcast a message to neighbours,
(2) receive a set of messages,
(3) set a new state based on previous state and received messages.
- Each node eventually halts and produces an output.

Model of computation

- A simple finite connected undirected graph, with constant-size local inputs.
- An identical deterministic state machine on each node.
- Computation proceeds in synchronous rounds:
(1) broadcast a message to neighbours,
(2) receive a set of messages,
(3) set a new state based on previous state and received messages.
- Each node eventually halts and produces an output.

Complexity measures

Given an algorithm (a state machine),

- its running time or time complexity is the number of communication rounds until all nodes have halted,
- its space complexity is the number of states that are visited at least once, as a function of n, over all graphs of n nodes and of maximum degree at most Δ.

Warm-up: count distance mod 2

- No local input; local outputs from $\{0,1, \perp\}$.
- If the graph is a binary tree where each edge is directed towards the leaves, output the distance modulo 2 to the closest leaf node. Otherwise, output \perp.
- Edge directions can be encoded in the structure of the graph.

Warm-up: count distance mod 2

- No local input; local outputs from $\{0,1, \perp\}$.
- If the graph is a binary tree where each edge is directed towards the leaves, output the distance modulo 2 to the closest leaf node. Otherwise, output \perp.
- Edge directions can be encoded in the structure of the graph.
- If the graph is not of the desired type, at least one node can detect it locally and inform other nodes.
- The root node needs $\Theta(\log n)$ communication rounds until it knows its parity.

Graphs of maximum degree 2

The following was already known:

Theorem (Kuusisto 2014)

There exist a distributed algorithm that always halts but has a non-constant running time in the class of finite graphs of maximum degree 2.

However, this algorithm has a non-constant space complexity.

The main result

Theorem

There exists a graph decision problem P and a constant-space distributed algorithm A such that

- algorithm A solves problem P,
- P requires at least a linear running time.

Preliminaries

- The Thue-Morse sequence is a sequence over $\{0,1\}$ obtained by
- starting with 0 ,
- appending the Boolean complement of the sequence obtained so far.
- First steps:

0
01
0110
01101001
0110100110010110

Preliminaries

- The Thue-Morse sequence is a sequence over $\{0,1\}$ obtained by
- starting with 0 ,
- appending the Boolean complement of the sequence obtained so far.
- First steps:

0
01
0110
01101001
0110100110010110

- Interesting property: does not contain any cubes, i.e. subwords $x x x$ for any $x \in\{0,1\}^{*}$

Preliminaries

- An equivalent definition by a Lindenmayer system:
- variables: 0,1
- constants: none
- start: 0
- production rules: $(0 \mapsto 01),(1 \mapsto 10)$

The decision problem

- Local inputs from $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} \times\left\{0,1,{ }_{-}\right\}$.
- Local outputs from $\{$ yes, no $\}$.
- An instance is a yes-instance if and only if
- the graph is a path,
- first parts of the local inputs define a consistent orientation: ABCABCABC...,
- second parts of the local inputs define a valid word over $\{0,1, \ldots\}$.

The decision problem

- Local inputs from $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} \times\left\{0,1,{ }_{-}\right\}$.
- Local outputs from $\{y e s, n o\}$.
- An instance is a yes-instance if and only if
- the graph is a path,
- first parts of the local inputs define a consistent orientation: ABCABCABC...,
- second parts of the local inputs define a valid word over $\{0,1, \ldots\}$.
- Valid words are defined recursively as follows:
- _ 0 _ is valid,
- if x is valid and y is obtained from x by applying substitutions ($0 \mapsto 0 _1 _1 _0$) and ($1 \mapsto 1 _0 _0 _1$) to each occurrence of 0 and 1 , then y is valid.

The algorithm

- Denote the end of the path by \mid.
- Denote one or more x 's by $x+$.
- Each node v does the following:
(1) Verify the orientation: 3 different symbols from $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mid\}$ can be found within the radius-1 neighbourhood of v; otherwise abort.
(2) Verify the word locally: radius-1 neighbourhood is in $\left\{\mid-0,0 _0,1 _1,0 _1,0_{-}, __{-}\right\}$; otherwise abort.
(3)
- Aborting means that the node sends message "abort" to its neighbours, halts and outputs no. Whenever the node receives such a message, it passes it on, halts and outputs "no".

The algorithm

- Each node v does the following:
(3) Set current symbol $c(v)$ to be the local input from $\left\{0,1, _\right\}$. Repeat the following steps:
(1) Gather two buffers, L and R . Initially, broadcast _ if $c(v)=_{\text {_ }}$, otherwise $c(v)+$. If you receive L from the left, send $r(L, c(v))$ to the right, where $r(L, c(v))=L$ if $L=A c(v)+$ for some A, otherwise $r(L, c(v))=L_{-}$if $c(v)=_{-}$, otherwise $r(L, c(v))=L c(v)+$. Handle R similarly. Continue until both L and R contain eight _'s (or an end-of-the-path marker |). This can be done in constant space.

The algorithm

- Each node v does the following:
(3) Set current symbol $c(v)$ to be the local input from $\left\{0,1, _\right\}$. Repeat the following steps:
(1) Gather two buffers, L and R . Initially, broadcast _ if $c(v)=_{-}$, otherwise $c(v)+$. If you receive L from the left, send $r(L, c(v))$ to the right, where $r(L, c(v))=L$ if $L=A c(v)+$ for some A, otherwise $r(L, c(v))=L_{-}$if $c(v)=_{-}$, otherwise $r(L, c(v))=L c(v)+$. Handle R similarly. Continue until both L and R contain eight _'s (or an end-of-the-path marker |). This can be done in constant space.

The algorithm

- Each node v does the following:
(3) Set current symbol $c(v)$ to be the local input from $\left\{0,1, _\right\}$. Repeat the following steps:
(1) Gather two buffers, L and R. Initially, broadcast _if $c(v)={ }_{\text {_ }}$, otherwise $c(v)+$. If you receive L from the left, send $r(L, c(v))$ to the right, where $r(L, c(v))=L$ if $L=A c(v)+$ for some A, otherwise $r(L, c(v))=L_{-}$if $c(v)=_{-}$, otherwise $r(L, c(v))=L c(v)+$. Handle R similarly. Continue until both L and R contain eight _'s (or an end-of-the-path marker |).
This can be done in constant space.
(2) If $\mathrm{Lc}(v) \mathrm{R}$ matches $\mid _0+_$or $\left|-0+_1+_1+_0+_\right|$, halt and output yes.
(3) Apply the following substitution to the word $\mathrm{Lc}(v) \mathrm{R}$:
_0+_1+_1+_0+_1+_0+_0+_1+_ \mapsto _0+00+00+00+_1+11+11+11+_. If the pattern matches in several positions, and they result in different new symbols for node v, abort. If the pattern does not match, abort. Otherwise, update $c(v)$ according to the substitution.
This constitutes one phase in the execution.

The algorithm

We call the sequence of all the current symbols $c(v)$ a configuration.

Lemma

Assume that in the current configuration, each maximal subword of 0's or 1 's is of length ℓ. If the algorithm is executed for one phase and no node aborts, in the resulting configuration the length is $4 \ell+3$.

This guarantees that

- each phase completes in a finite amount of time,
- nodes agree on when to start a new phase.

It also follows that the algorithm always halts in finite graphs.

Accepting a yes-instance

We call a word $x_{1}^{i}-x_{2-}^{i} \ldots x_{p-}^{i}$ a padded Thue-Morse word of length p if $x_{1} x_{2} \ldots x_{p}$ is a prefix of the Thue-Morse sequence.

Lemma

If the current configuration is a padded Thue-Morse word of length 4^{k} and the algorithm is executed for one phase without aborting, the resulting configuration is a padded Thue-Morse word of length 4^{k-1}.

From this we can derive that in a yes-instance, each node eventually outputs "yes".

Rejecting a no-instance

Lemma

In a no-instance, each node eventually outputs "no".

Proof idea:

- Assume for a contradiction that a no-instance gets accepted.
- If there is a yes-instance of the same size, it also gets accepted.
- Consider the first phase after which the configurations are identical in both cases.
- In the previous configurations, there were two different subwords that were replaced by $0++_{+} 1+$. This can be shown to be a contradiction.
- Cycle graphs and paths of wrong length can also be shown to be rejected.

Running time

- Let ℓ be the length of maximal subwords of 0 's or 1 's. Gathering the buffers takes $8 \ell+8=8(\ell+1)$ rounds.
- Recall the lemma: the length of the maximal subwords increases from ℓ to $4 \ell+3$ in one phase.
- There are roughly $\frac{1}{2} \log n$ phases before halting.
- The running time is thus

$$
8(1+1)+8(7+1)+8(31+1)+\cdots+8\left(2^{2((\log n) / 2)-1}\right) \leq 8 n \text { rounds }
$$

Running time

- Let ℓ be the length of maximal subwords of 0 's or 1 's. Gathering the buffers takes $8 \ell+8=8(\ell+1)$ rounds.
- Recall the lemma: the length of the maximal subwords increases from ℓ to $4 \ell+3$ in one phase.
- There are roughly $\frac{1}{2} \log n$ phases before halting.
- The running time is thus

$$
8(1+1)+8(7+1)+8(31+1)+\cdots+8\left(2^{2((\log n) / 2)-1}\right) \leq 8 n \text { rounds }
$$

- This is asymptotically tight.

Conclusion

- We presented graph problems with
- logarithmic (maximum degree 3) and
- linear (maximum degree 2)
time complexity, when restricted to constant space.
- Possible future direction: other time complexity classes under the constant-space assumption?

Conclusion

- We presented graph problems with
- logarithmic (maximum degree 3) and
- linear (maximum degree 2)
time complexity, when restricted to constant space.
- Possible future direction: other time complexity classes under the constant-space assumption?

Thanks!

