A Lower Bound for the Distributed Lovász Local Lemma

Tuomo Lempiäinen

Department of Computer Science, Aalto University, Finland

Graduiertenseminar "Theorie der künstlichen Intelligenz", Universität Bremen 25th November 2015

This is joint work with

- Sebastian Brandt,
- Orr Fischer,
- Juho Hirvonen,
- Barbara Keller,
- Joel Rybicki,
- Jukka Suomela,
- Jara Uitto.

2 Our model of distributed computing

- Primarily used in combinatorics to give existence proofs.
- Randomly choose objects from a certain class, and show that the probability that the object is of the desired kind is larger than zero.
- It follows that at least one such object has to exist.

- Primarily used in combinatorics to give existence proofs.
- Randomly choose objects from a certain class, and show that the probability that the object is of the desired kind is larger than zero.
- It follows that at least one such object has to exist.
- Let $\mathcal{E} = \{E_1, \dots, E_n\}$ be a set of *bad* events that make the object undesirable.
- If the events are mutually independent and Pr(E_i) < 1 for each i, we have trivially Pr(∩ⁿ_{i=1} E_i) > 0.
- What if there is some dependence between the events?

Theorem (Erdős and Lovász, 1975)

Let $\mathcal{E} = \{E_1, \ldots, E_n\}$ be a finite set of events such that each E_i depends on at most d other events. If $Pr(E_i) \leq p$ and $4pd \leq 1$, then there is a positive probability that none of the events occur.

Theorem (Erdős and Lovász, 1975)

Let $\mathcal{E} = \{E_1, \ldots, E_n\}$ be a finite set of events such that each E_i depends on at most d other events. If $Pr(E_i) \leq p$ and $4pd \leq 1$, then there is a positive probability that none of the events occur.

Theorem (Lovász, 1977)

Let $\mathcal{E} = \{E_1, \ldots, E_n\}$ be a finite set of events such that each E_i depends on at most d other events. If $Pr(E_i) \leq p$ and $ep(d + 1) \leq 1$, then there is a positive probability that none of the events occur.

e = 2.718... is the base of the natural logarithm.

LLL: example

Proposition

Any instance ϕ of k-SAT where no variable appears in more than $\frac{2^{k-2}}{k}$ clauses is satisfiable.

LLL: example

Proposition

Any instance ϕ of k-SAT where no variable appears in more than $\frac{2^{k-2}}{k}$ clauses is satisfiable.

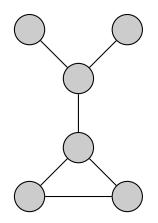
Proof.

- Pick a truth assignment uniformly at random.
- 2 Let E_i denote the event "clause *i* is not satisfied".
- **3** $\Pr(E_i) = 2^{-k} =: p.$
- E_i depends on at most $d := k \frac{2^{k-2}}{k} = 2^{k-2}$ other events.
- We have $4pd = 4 \cdot 2^{-k} \cdot 2^{k-2} = 1$.
- Now LLL implies that $Pr(\bigcap \overline{E_i}) > 0$.

The algorithmic LLL

- LLL itself does not give a method for finding the object whose existence it proves.
- Beck showed in 1991 that there exist a deterministic polynomial-time algorithm for a weaker variant of LLL.
- This inspired a long line of reseach about algorithms for various versions of LLL.
- The breakthrough result of Moser and Tardos (2010) shows that there is a simple randomised resampling algorithm for a very general form of LLL.
- But we are interested in the *distributed* algorithmic LLL.

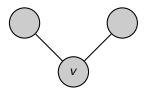
Distributed computing: the LOCAL model



A simple connected undirected graph G = (V, E), where each node $v \in V$

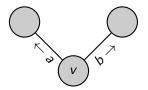
- is given its own input,
- runs the same algorithm,
- communicates with its neighbours,
- produces its own output.

Initially, each node v knows the total number of nodes n, the maximum degree of the graph Δ , and a task-specific local input f(v).



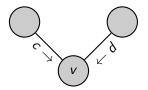
- sends messages to its neighbours,
- receives messages from its neighbours,
- updates its state.

Initially, each node v knows the total number of nodes n, the maximum degree of the graph Δ , and a task-specific local input f(v).



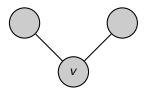
- sends messages to its neighbours,
- receives messages from its neighbours,
- updates its state.

Initially, each node v knows the total number of nodes n, the maximum degree of the graph Δ , and a task-specific local input f(v).



- sends messages to its neighbours,
- receives messages from its neighbours,
- updates its state.

Initially, each node v knows the total number of nodes n, the maximum degree of the graph Δ , and a task-specific local input f(v).



- sends messages to its neighbours,
- receives messages from its neighbours,
- updates its state.

Initially, each node v knows the total number of nodes n, the maximum degree of the graph Δ , and a task-specific local input f(v).



In every round, each node $v \in V$

- sends messages to its neighbours,
- receives messages from its neighbours,
- updates its state.

After the final round, each node announces its output.

The running time of an algorithm is the *number of communications rounds* until all nodes have stopped, as a function of n.

- The same graph G = (V, E) serves both as the communication network and as the *problem instance*.
- A graph problem is defined by a function Π that maps each graph G and each labelling f: V → X to a set Π(G, f) of solutions S: V → Y.

- The output of algorithm A in (G, f) is the function g: V → Y such that g(v) is the local output of v for each node v.
- Algorithm A solves problem Π if for each graph G and labelling f the output g of A in (G, f) is in Π(G, f).

- We assume that each node can toss a countably infinite number of random coins.
- Equivalently, each node v is given a real number x(v) taken uniformly at random from [0, 1].
- With probability 1, the values x(v) are globally unique and can thus be used as identifiers.

- We assume that each node can toss a countably infinite number of random coins.
- Equivalently, each node v is given a real number x(v) taken uniformly at random from [0, 1].
- With probability 1, the values x(v) are globally unique and can thus be used as identifiers.
- Monte Carlo algorithms:
 - Running time is deterministic.
 - Output is a valid solution with high probability (with probability at least $1 1/n^c$ for an arbitrarily large constant c).

The distributed Lovász local lemma

- Let $\mathcal{X} = \{X_1, \dots, X_m\}$ be a set of mutually independent random variables and let $\mathcal{E} = \{E_1, \dots, E_n\}$ be a set of events.
- Denote by $vbl(E_i) \subseteq \mathcal{X}$ the subset of variables that E_i depends on.
- Define a *dependency graph* $G_{\mathcal{E}} = (\mathcal{E}, \mathcal{D})$, where $\mathcal{D} = \{ \{E_i, E_j\} : vbl(E_i) \cap vbl(E_j) \neq \emptyset \}.$

Problem

Let the communication network be isomorphic to $G_{\mathcal{E}} = (\mathcal{E}, \mathcal{D})$; each node v corresponds to an event $E_v \in \mathcal{E}$ and knows the set $vbl(E_v)$. The task is to have each node output an assignment a_v of the variables $vbl(E_v)$ such that

• for any $\{E_u, E_v\} \in \mathcal{D}$ and $X \in vbl(E_u) \cap vbl(E_v)$ it holds that $a_u(X) = a_v(X)$,

2 the event E_v does not occur under assignment a_v .

- The algorithm of Moser and Tardos (2010) can be adapted to the distributed setting; the running time is $O(\log^2 n)$ rounds.
- Chung et al. (2014) gave a distributed algorithm running in $O(\log n)$ rounds in bounded-degree graphs.
- LLL can be used to properly colour a cycle graph using a constant number of colours. This is known to require Ω(log* n) rounds.

Theorem

Let $f: \mathbb{N} \to \mathbb{R}$ be such that $f(4) \leq 16$. Let A be a Monte Carlo distributed algorithm for LLL that finds an assignment avoiding all the bad events under the LLL criteria $pf(d) \leq 1$ with high probability. Then the running time of A is $\Omega(\log \log n)$ rounds.

Note that we can plug in, for example, either of the LLL criteria $ep(d+1) \leq 1$ or $4pd \leq 1$.

- Two new graph problems: sinkless orientation and sinkless colouring.
- LLL can be used to solve the sinkless orientation in 3-regular graphs.
- A mutual speedup lemma:
 - If we can find a sinkless colouring in *t* rounds, we can find a sinkless orientation in *t* rounds.
 - If we can find a sinkless orientation in t rounds, we can find a sinkless colouring in t 1 rounds.
- By iterating the lemma, we obtain an algorithm that finds a sinkless orientation in 0 rounds, which leads to a contradiction.

- An orientation σ of a graph G = (V, E) assigns a direction $\sigma(\{u, v\}) \in \{u \rightarrow v, u \leftarrow v\}$ for each edge $\{u, v\} \in E$.
- For all $v \in V$ define in-deg $(v, \sigma) = |\{u : (u, v) \in \sigma(E)\}|$, out-deg $(v, \sigma) = |\{u : (v, u) \in \sigma(E)\}|$ and deg(v) = in-deg (v, σ) + out-deg (v, σ) .
- A node v with in-deg(v, σ) = deg(v) is called a sink. We call an orientation σ sinkless if no node is a sink, that is, every node v has out-deg(v, σ) > 0.

- We write $[k] = \{0, 1, \dots, k-1\}.$
- ψ: E → [χ] is a proper edge χ-colouring if any two adjacent edges have a different colour.
- Given a properly edge χ-coloured graph G = (V, E, ψ), we call φ: V → [χ] a sinkless colouring of G if for all edges e = {u, v} ∈ E it holds that φ(u) = ψ(e) ⇒ φ(v) ≠ ψ(e).

Problem (Sinkless colouring)

Given an edge d-coloured d-regular graph $G = (V, E, \psi)$, find a sinkless colouring φ . That is, compute a colouring φ such that for no edge $e = \{u, v\} \in E$ we have $\varphi(u) = \varphi(v) = \psi(e)$.

Problem (Sinkless orientation)

Given an edge d-coloured d-regular graph $G = (V, E, \psi)$, find a sinkless orientation. That is, compute an orientation σ such that $out-deg(v, \sigma) > 0$ for all $v \in V$.

Graph problem definitions: example

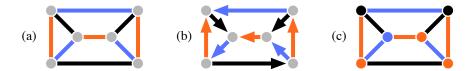


Figure: (a) A 3-regular edge 3-coloured graph. (b) A sinkless orientation. (c) A sinkless colouring.

From LLL to Sinkless Orientation

Theorem

Let $f: \mathbb{N} \to \mathbb{R}$ be such that $f(4) \leq 16$. Let A be a Monte Carlo distributed algorithm for LLL such that A finds an assignment avoiding all the bad events under the LLL criteria $pf(d) \leq 1$ in time T for some $T: \mathbb{N} \to \mathbb{N}$. Then there is a Monte Carlo distributed algorithm B that finds a sinkless orientation in 3-regular graphs of girth at least 5 in time O(T).

From LLL to Sinkless Orientation

Theorem

Let $f: \mathbb{N} \to \mathbb{R}$ be such that $f(4) \leq 16$. Let A be a Monte Carlo distributed algorithm for LLL such that A finds an assignment avoiding all the bad events under the LLL criteria $pf(d) \leq 1$ in time T for some $T: \mathbb{N} \to \mathbb{N}$. Then there is a Monte Carlo distributed algorithm B that finds a sinkless orientation in 3-regular graphs of girth at least 5 in time O(T).

- We start with 4-regular graphs G = (V, E).
- Set $vbl(E_v) = \{X_e : v \in e\}$ for each $v \in V$
- For each $e = \{u, v\} \in E$, the variable X_e ranges over $\{u \rightarrow v, u \leftarrow v\}$
- The bad event E_v occurs exactly when for all neighbours u of v the variable $X_{\{v,u\}}$ takes the value $u \to v$

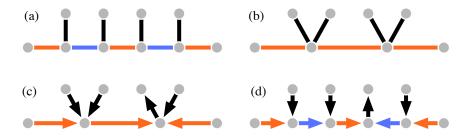
- If the variables X_e are sampled uniformly at random, we have $\Pr(E_v) = 1/2^4 = 1/16$ for each $v \in V$.
- Let p = 1/16 and d = 4. Now Pr(E_v) ≤ p and E_v depends on d other events for each v ∈ V, and the condition pf(d) ≤ 1 holds, given f(4) ≤ 16.
- Run the algorithm A and define an orientation σ of G by setting $\sigma(e) = a_v(X_e)$, where $v \in e$, for each $e \in E$.
- Now σ is a sinkless orientation of G.

From 3-regular to 4-regular graphs

- LLL is not directly applicable: the probability of bad events would be $p = 1/2^3 = 1/8$ and thus ep(d + 1) > 1.
- Contract edges of one colour class to obtain a 4-regular graph.
- Simulate the algorithm for the 4-regular case in the 3-regular graph.

From 3-regular to 4-regular graphs

- LLL is not directly applicable: the probability of bad events would be $p = 1/2^3 = 1/8$ and thus ep(d + 1) > 1.
- Contract edges of one colour class to obtain a 4-regular graph.
- Simulate the algorithm for the 4-regular case in the 3-regular graph.



The Mutual Speedup Lemma

Lemma

Suppose B is a sinkless colouring algorithm that runs in t rounds such that for any edge $e = \{u, v\}$ the probability of outputting a forbidden configuration $B(u) = \psi(e) = B(v)$ is at most p. Then there exists a sinkless orientation algorithm B' that runs in t rounds such that for any node u the probability of being a sink is at most $6p^{1/3}$.

Lemma

Suppose B is a sinkless colouring algorithm that runs in t rounds such that for any edge $e = \{u, v\}$ the probability of outputting a forbidden configuration $B(u) = \psi(e) = B(v)$ is at most p. Then there exists a sinkless orientation algorithm B' that runs in t rounds such that for any node u the probability of being a sink is at most $6p^{1/3}$.

Lemma

Suppose B' is a sinkless orientation algorithm that runs in time t such that the probability that any node u is a sink is at most ℓ . Then there exists a sinkless colouring algorithm B" that runs in time t - 1 such that the probability for any edge $e = \{u, v\}$ having a forbidden configuration $B''(u) = \psi(e) = B''(v)$ is less than $4\ell^{1/4}$.

From colouring to orientation: the proof idea

- Given a randomised sinkless *colouring* algorithm *B* running in *t* rounds, construct a randomised sinkless *orientation* algorithm *B'* that also runs in *t* rounds.
- We write B(u) for the colour that u outputs according to B and B'(e) for the orientation B' outputs for edge e.
- We denote the radius-t neighbourhood of a node u by
 N^t(u) = {v ∈ V : dist(u, v) ≤ t}, where dist(u, v) is the length of the shortest path between u and v.
- The radius-t neighbourhood of an edge $\{u, v\}$ is $N^t(\{u, v\}) = N^t(u) \cap N^t(v)$.

From colouring to orientation: the proof idea

Consider any node $u \in V$. Algorithm B' consists of three steps:

- **(**) Node *u* gathers its radius-*t* neighbourhood $N^t(u)$ in *t* rounds.
- **2** Node *u* computes the set C(u) of *candidate colours*:

$$C(u) = \{\psi(e) : \Pr[B(u) = \psi(e) \mid N^t(e)] \ge p^{1/3} \text{ and } e = \{u, v\}\},\$$

In addition, for each $e = \{u, v\}$ node u calculates the probability of v outputting the colour $\psi(e)$ when executing B. Thus u can determine whether $\psi(e) \in C(v)$.

From colouring to orientation: the proof idea

Consider any node $u \in V$. Algorithm B' consists of three steps:

- **(**) Node *u* gathers its radius-*t* neighbourhood $N^t(u)$ in *t* rounds.
- **2** Node *u* computes the set C(u) of *candidate colours*:

$$C(u) = \{\psi(e) : \Pr[B(u) = \psi(e) \mid N^t(e)] \ge p^{1/3} \text{ and } e = \{u, v\}\},\$$

In addition, for each $e = \{u, v\}$ node u calculates the probability of v outputting the colour $\psi(e)$ when executing B. Thus u can determine whether $\psi(e) \in C(v)$.

If ψ(e) ∈ C(u) ∩ C(v) or ψ(e) ∉ C(u) ∪ C(v), choose the orientation B'(e) of edge e arbitrarily. Otherwise, edge e is oriented according to the following rule:

$$B'(e) = \begin{cases} u \to v & \text{if } \psi(e) \in C(u) \text{ and } \psi(e) \notin C(v), \\ u \leftarrow v & \text{if } \psi(e) \notin C(u) \text{ and } \psi(e) \in C(v). \end{cases}$$

- There is a randomised distributed algorithm for LLL that runs in $O(\log n)$ rounds in bounded-degree graphs.
- The best previously known lower bound was $\Omega(\log^* n)$ rounds.
- We show that any randomised Monte Carlo algorithm for LLL that finds a satisfying assignment with high probability requires $\Omega(\log \log n)$ rounds.